Project description:The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19.
Project description:The urgent need for effective treatments against emerging viral diseases, driven by drug-resistant strains and new viral variants, remains critical. We focus on inhibiting the human dihydroorotate dehydrogenase (HsDHODH), one of the main enzymes responsible for pyrimidine nucleotide synthesis. This strategy could impede viral replication without provoking resistance. We evaluated naphthoquinone fragments, discovering potent HsDHODH inhibition with IC50 ranging from 48 to 684 nM, and promising in vitro anti-SARS-CoV-2 activity with EC50 ranging from 1.2 to 2.3 μM. These compounds exhibited low toxicity, indicating potential for further development. Additionally, we employed computational tools such as molecular docking and quantitative structure-activity relationship (QSAR) models to analyze protein-ligand interactions, revealing that these naphthoquinones exhibit a protein binding pattern similar to brequinar, a potent HsDHODH inhibitor. These findings represent a significant step forward in the search for effective antiviral treatments and have great potential to impact the development of new broad-spectrum antiviral drugs.
Project description:Resistance has developed in Plasmodium malaria parasites to every antimalarial drug in clinical use, prompting the need to characterize the pathways mediating resistance. Here, we report a framework for assessing development of resistance of Plasmodium falciparum to new antimalarial therapeutics. We investigated development of resistance by P. falciparum to the dihydroorotate dehydrogenase (DHODH) inhibitors DSM265 and DSM267 in tissue culture and in a mouse model of P. falciparum infection. We found that resistance to these drugs arose rapidly both in vitro and in vivo. We identified 13 point mutations mediating resistance in the parasite DHODH in vitro that overlapped with the DHODH mutations that arose in the mouse infection model. Mutations in DHODH conferred increased resistance (ranging from 2- to ~400-fold) to DHODH inhibitors in P. falciparum in vitro and in vivo. We further demonstrated that the drug-resistant parasites carrying the C276Y mutation had mitochondrial energetics comparable to the wild-type parasite and also retained their fitness in competitive growth experiments. Our data suggest that in vitro selection of drug-resistant P. falciparum can predict development of resistance in a mouse model of malaria infection.
Project description:Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools. The identified morphological signature is shared by inhibitors of DHODH and the functionally tightly coupled complex III of the mitochondrial respiratory chain as well as by UMP synthase, which is downstream of DHODH. The CPA appears to be particularly suited for the detection of DHODH inhibitors at the site of their action in cells. As DHODH is a validated therapeutic target, the CPA will enable unbiased identification of DHODH inhibitors and inhibitors of de novo pyrimidine biosynthesis for biological research and drug discovery.
Project description:The dihydroorotate dehydrogenase (DHODH) inhibitor brequinar failed all clinical trials for solid tumors. To investigate mechanisms to increase brequinar's efficacy, we employed a combination strategy to simultaneously inhibit the nucleotide salvage pathways. Brequinar is synergistic with the equilibrative nucleoside transporter (ENT) inhibitor dipyridamole, but not the concentrative nucleoside transporter inhibitor phlorizin. This synergy carries over to ENT1/2 inhibition, but not ENT4. Our previously described brequinar analogue 41 was also synergistic with dipyridamole as were the FDA-approved DHODH inhibitors leflunomide and teriflunomide but the latter required much higher concentrations than brequinar. Therefore, a combination of brequinar and ENT inhibitors presents a potential anti-cancer strategy in select tumors.
Project description:Drug resistance has been reported for every antimalarial in use highlighting the need for new strategies to protect the efficacy of therapeutics in development. We have previously shown that resistance can be suppressed with a population biology trap: by identifying situations where resistance to one compound confers hypersensitivity to another (collateral sensitivity), we can design combination therapies that not only kill the parasite but also guide its evolution away from resistance. We applied this concept to the Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) enzyme, a well validated antimalarial target with inhibitors in the development pipeline. Here, we report a high-throughput screen to identify compounds specifically active against PfDHODH resistant mutants. We additionally perform extensive cross-resistance profiling allowing us to identify compound pairs demonstrating the potential for mutually incompatible resistance. These combinations represent promising starting points for exploiting collateral sensitivity to extend the useful lifespan of new antimalarial therapeutics.
Project description:Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.
Project description:PurposeA therapeutic agent that targets both viral replication and the hyper-reactive immune response would offer a highly desirable treatment for severe acute respiratory syndrome corona virus 2 (SARS-CoV-2, coronavirus disease 2019, COVID-19) management. Emvododstat (PTC299; 4-chlorophenyl 6-chloro-1-[4-methoxyphenyl]-1,3, 4,9-tetrahydro-2H-pyrido[3,4-b]indole-2-carboxylate) was found to be a potent inhibitor of immunomodulatory and inflammation-related processes by inhibition of dihydroorotate dehydrogenase to reduce the severity of SARS-CoV-2 infections This drug interaction study was performed to determine if emvododstat was an inhibitor of CYP2D6.MethodsPotential drug-drug interactions between emvododstat and a CYP2D6 probe substrate (dextromethorphan) were investigated by measuring plasma dextromethorphan and metabolite (dextrorphan) concentrations before and after emvododstat administration. On day 1, 18 healthy subjects received an oral dose of 30 mg dextromethorphan followed by a 4-day washout period. On day 5, subjects received an oral dose of 250 mg emvododstat with food. Two hours later, 30 mg dextromethorphan was administered.ResultsWhen given with emvododstat, plasma dextromethorphan concentrations increased substantially, while metabolite levels (dextrorphan) remained essentially the same. Maximum plasma dextromethorphan concentration (Cmax) increased from 2006 to 5847 pg/mL. Dextromethorphan exposure (AUC) increased from 18,829 to 157,400 h·pg/mL for AUC0-last and from 21,585 to 362,107 h·pg/mL for AUC0-inf following administration of emvododstat. When dextromethorphan parameters were compared before and after emvododstat, least squares mean ratios (90% confidence interval) were found to be 2.9 (2.2, 3.8), 8.4 (6.1, 11.5), and 14.9 (10.0, 22.1) for Cmax, AUC0-last, and AUC0-inf, respectively.ConclusionEmvododstat appears to be a strong CYP2D6 inhibitor. No drug-related treatment emergent adverse effects (TEAEs) were considered to be severe or serious.Trial registrationEudraCT 2021-004626-29, 11 May 2021.
Project description:New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.
Project description:Malaria kills nearly 0.5 million people yearly and impacts the lives of those living in over 90 countries where it is endemic. The current treatment programs are threatened by increasing drug resistance. Dihydroorotate dehydrogenase (DHODH) is now clinically validated as a target for antimalarial drug discovery as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. We discovered a related isoxazolopyrimidine series in a phenotypic screen, later determining that it targeted DHODH. To determine if the isoxazolopyrimidines could yield a drug candidate, we initiated hit-to-lead medicinal chemistry. Several potent analogues were identified, including a compound that showed in vivo antimalarial activity. The isoxazolopyrimidines were more rapidly metabolized than their triazolopyrimidine counterparts, and the pharmacokinetic data were not consistent with the goal of a single-dose treatment for malaria.