Unknown

Dataset Information

0

Statistical Implementations of Agent-Based Demographic Models.


ABSTRACT: A variety of demographic statistical models exist for studying population dynamics when individuals can be tracked over time. In cases where data are missing due to imperfect detection of individuals, the associated measurement error can be accommodated under certain study designs (e.g. those that involve multiple surveys or replication). However, the interaction of the measurement error and the underlying dynamic process can complicate the implementation of statistical agent-based models (ABMs) for population demography. In a Bayesian setting, traditional computational algorithms for fitting hierarchical demographic models can be prohibitively cumbersome to construct. Thus, we discuss a variety of approaches for fitting statistical ABMs to data and demonstrate how to use multi-stage recursive Bayesian computing and statistical emulators to fit models in such a way that alleviates the need to have analytical knowledge of the ABM likelihood. Using two examples, a demographic model for survival and a compartment model for COVID-19, we illustrate statistical procedures for implementing ABMs. The approaches we describe are intuitive and accessible for practitioners and can be parallelised easily for additional computational efficiency.

SUBMITTER: Hooten M 

PROVIDER: S-EPMC7436772 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Statistical Implementations of Agent-Based Demographic Models.

Hooten Mevin M   Wikle Christopher C   Schwob Michael M  

International statistical review = Revue internationale de statistique 20200803 2


A variety of demographic statistical models exist for studying population dynamics when individuals can be tracked over time. In cases where data are missing due to imperfect detection of individuals, the associated measurement error can be accommodated under certain study designs (e.g. those that involve multiple surveys or replication). However, the interaction of the measurement error and the underlying dynamic process can complicate the implementation of statistical agent-based models (ABMs)  ...[more]

Similar Datasets

| S-EPMC7473774 | biostudies-literature
| S-EPMC3365211 | biostudies-literature
| S-EPMC7582758 | biostudies-literature
| S-EPMC9576090 | biostudies-literature
| S-EPMC8423313 | biostudies-literature
| S-EPMC4958941 | biostudies-other
| S-EPMC6098619 | biostudies-literature
| S-EPMC5834198 | biostudies-literature
| S-EPMC6738619 | biostudies-literature
| S-EPMC9315201 | biostudies-literature