Project description:In metastatic breast cancer (MBC), blood is a source of circulating tumor cells (CTCs). CTCs may serve as a ''real-time liquid biopsy" as they represent metastatic tumor genetics better than primary tumor. PIK3CA is one of the most important oncogenes in treatment-unresponsive breast cancers. The aim of this study was to detect PIK3CA mutations and hereditary cancer variants in CTCs from MBC patients. Forty-seven blood samples were obtained from 20 MBC patients from at least 1/3 consecutive time points. CTCs were quantified using the CellSearch system and isolated from 11/20 patients with ≥5/7.5 ml CTCs (14/47 blood samples) using the DEPArray system. DNA was extracted and amplified to perform Sanger sequencing on PIK3CA gene. Sequencing revealed a pathogenic PIK3CA mutation in 2/11 (18 %) cases. Subsequently, we evaluated a 26-target hereditary gene panel by Next Generation Sequencing and identified a concomitant pathogenic mutation in the TP53 gene in a patient with a PIK3CA mutation. No pathogenic germline variants were found. Our data support the conclusion that CTCs analysis may be used to identify mutations in patients to identify those more likely to metastasize.
Project description:Derangement of the phosphatidylinositol-3 kinase (PI3K) pathway is implicated in several subtypes of breast cancers. Mutation or upregulation of PI3K enhances cancer cells' survival, proliferation, and ability to metastasize, making it an attractive molecular target for systemic therapy. PI3K has four isoforms, and several drugs targeting individual isoforms or pan-PI3K have been or are currently being investigated in clinical trials. However, the search for an effective PI3K inhibitor with a robust therapeutic effect and reasonable safety profile for breast cancer treatment remains elusive. This review focuses on the recently completed and ongoing clinical trials involving PI3K inhibitors as mono- or combination therapy in breast cancer. We review the salient findings of clinical trials, the therapeutic efficacy of PI3K inhibitors, and reported adverse effects leading to treatment discontinuation. Lastly, we discuss the challenges and potential opportunities associated with adopting PI3K inhibitors in the clinic.
Project description:BackgroundEverolimus, an inhibitor of mammalian target of rapamycin (mTOR), has been shown to increase the efficacy of endocrine therapies in hormone receptor (HR)-positive metastatic breast cancer. However, because breast cancer is a highly heterogeneous disease, the responses of different patients to everolimus may vary. Therefore, we performed this study to better select patients who will benefit most from or be resistant to everolimus.MethodsPatients with HR-positive breast cancer who were treated with everolimus at the Cancer Hospital, Chinese Academy of Medical Sciences from February 2014 to March 2017 were enrolled in the present study. Mutations in ctDNA were assayed in 1021 tumor-related genes via gene panel target capture-based next-generation sequencing.ResultsIn total, 120 patients with metastatic breast cancer who were treated with everolimus were enrolled in the present study. The median progression-free survival (PFS) of all patients was 5.1 months (95% confidence interval [CI] 3.9-6.3 months). No difference in survival was observed between patients who received endocrine drugs used in previous treatment regimens and patients who did not receive these drugs (median PFS 5.2 and 5.1 months, respectively, p > 0.05). Additionally, we did not find any difference in outcomes between patients who had primary resistance to previously used endocrine drugs and patients who had nonprimary resistance to previous treatments (p > 0.05). Multivariate analysis showed that < 3 metastatic sites, < 2 lines of previous endocrine therapy, < 2 lines of previous chemotherapy, and treatment with everolimus combined with fulvestrant were associated with improved survival (p < 0.05). Sixteen patients underwent ctDNA analysis before everolimus treatment. The frequency of PIK3CA gene mutations was 62.5%, and H1047R was the most frequently detected mutation. Patients with the PIK3CA/H1047R mutation had longer PFS than patients with wild-type or other mutant forms of PIK3CA, and the median PFS in these two groups of patients was 8.8 and 4.1 months, respectively (p < 0.05).ConclusionsOur data suggest that patients who receive more lines of chemotherapy or endocrine therapy are less likely to benefit from everolimus. For everolimus combination therapy, we can even select endocrine drugs that gave rise to primary resistance in previous treatments. Additionally, the PIK3CA/H1047R mutation may be a potential biomarker of sensitivity to everolimus.
Project description:This real-world cohort analysis assessed the efficacy of alpelisib and endocrine treatment (ET) combinations in a post-everolimus setting. Thirteen women who started alpelisib and ET at standard doses between 2018 and 2022 for advanced breast cancer (ABC), after undergoing CDK4/6i and everolimus treatment, were eligible for the study entry. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were the objective response rate (ORR) and clinical benefit rate (CBR), with different molecular profiling. The patients had previously received a median of four (range 3-8) systemic treatments, including CDK4/6i and everolimus. The median PFS on alpelisib was 5.5 months (range 0.5-10), and four women each had an ORR and three (23%) had a stable disease. The 6-month CBR was 46.1%, similar to the BYLeive study cohort C (47.8%). Notably, our cohort included patients with a long CBR under everolimus treatment (median 6 months, range 1-18); however, the responses to alpelisib and everolimus were not correlated (Pearson r = -0.23, p = 0.44). The PIK3CA, P53, ARID, GATA3, and ESR1 mutations were not associated with the 6-month CBR. Despite heavy pre-treatments, including everolimus, alpelisib was clinically relevant in our cohort, even among patients with an ESR1 mutation. The best treatment sequence for PIK3CA/mTOR inhibitors warrants examination in future trials on PIK3CA-mutant inpatients with luminal ABC.
Project description:We aim to elucidate the prognostic value of PIK3CA mutations and copy number (CN) gain (PIK3CA-mut/gain) in hormone receptor-positive and HER2-negative (HR + /HER2-) breast cancer (BC). We analyzed primary HR + /HER2- BC from three publicly available datasets comprising over 2000 samples and assessed the associations with tumoral and clinical characteristics and outcome. Clinical benefit (CB) in alpelisib-treated patients from two studies including 46 patients was analyzed. About 8-10% of HR + /HER2- primary BC had PIK3CA-mut/gain. In two of the datasets analyzed, among patients with PIK3CA mutant tumors, those with mut/gain had significantly worse outcome compared to those with CN neutral (PIK3CA-mut/neut) and PIK3CA-mut/gain remained an independent prognostic factor. CB of alpelisib-treated patients with PIK3CA-mut/gain and PIK3CA-mut/neut tumors was comparable. PIK3CA CN might help clarifying the prognostic and predictive role of PIK3CA mutations. Further studies are warranted.
Project description:Despite the significant achievements in the diagnosis and treatment of metastatic breast cancer (MBC), this condition remains substantially an incurable disease. In recent years, several clinical studies have aimed to identify novel molecular targets, therapeutic strategies, and predictive biomarkers to improve the outcome of women with MBC. Overall, ~40% of hormone receptor (HR)+/HER2- MBC cases harbor alterations affecting the (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. This pathway is a major target in oncogenesis, as it regulates growth, proliferation, cell survival, and angiogenesis. Lately, the pharmacologic targeting of PIK3CA in HR+/HER2- MBC has shown significant benefits after the occurrence of endocrine therapy resistance. The orally available α-selective PIK3CA inhibitor, alpelisib, has been approved in this setting. To perform an optimal patients' selection for this drug, it is crucial to adopt a tailored methodology. Clinically relevant PIK3CA alterations may be detected in several biospecimens (e.g. tissue samples and liquid biopsy) using different techniques (e.g. real-time PCR and next-generation sequencing). In this study, we provide an overview of the role of PIK3CA in breast cancer and of the characterization of its mutational status for appropriate clinical management.
Project description:The phosphatidylinositol 3' kinase (PI3K) pathway is commonly activated in breast cancer and aberrations such as PI3K mutations are common. Recent exciting clinical trial results in advanced estrogen receptor-positive (ER) breast cancer support mTOR activation is a major means of estrogen-independent tumor growth. Hence the means to identify a responsive breast cancer population that would most benefit from these compounds in the adjuvant or earlier stage setting is of high interest. Here we study PIK3CA genotype as well as a previously reported PI3K/mTOR-pathway gene signature (PIK3CA-GS) and their ability to estimate the level of PI3K pathway activation in two clinical trials of newly diagnosed ER-positive breast cancer patients- a total of 81 patients- one of which was randomized between letrozole and placebo vs letrozole and everolimus. The main objectives were to correlate the baseline PIK3CA genotype and GS with the relative change from baseline to day 15 in Ki67 (which has been shown to be prognostic in breast cancer) and phosphorylated S6 (S240) immunohistochemistry (a substrate of mTOR). In the randomized dataset, the PIK3CA-GS could identify those patients with the largest relative decreases in Ki67 to letrozole/everolimus (R = -0.43, p = 0.008) compared with letrozole/placebo (R = 0.07, p = 0.58; interaction test p = 0.02). In a second dataset of pre-surgical everolimus alone, the PIK3CA-GS was not significantly correlated with relative change in Ki67 (R = -0.11, p = 0.37) but with relative change in phosphorlyated S6 (S240) (R = -0.46, p = 0.028). PIK3CA genotype was not significantly associated with any endpoint in either datasets. Our results suggest that the PIK3CA-GS has potential to identify those ER-positive BCs who may benefit from the addition of everolimus to letrozole. Further evaluation of the PIK3CA-GS as a predictive biomarker is warranted as it may facilitate better selection of responsive patient populations for mTOR inhibition in combination with letrozole.
Project description:BackgroundThe benefit of alpelisib in hormone-receptor-positive (HR+) metastatic breast cancer patients provided clinical evidence for the increasing importance of PIK3CA testing. We performed a comparison of liquid biopsy and tissue-based detection of PIK3CA mutations.Materials and methodsPIK3CA hotspot mutation analysis using a high-resolution SiMSen-Seq assay was performed in plasma from 93/99 eligible patients with HR+/HER2- breast cancer. Additionally, mFAST-SeqS was used to estimate the tumour fractions in plasma samples. In 72/93 patients, matched tissue was available and analysed using a customised Ion Torrent panel.ResultsPIK3CA mutations were detected in 48.6% of tissue samples and 47.3% of plasma samples, with identical PIK3CA mutation detected in 24/72 (33.3%) patients both in tissue and plasma. In 10 (13.9%) patients, mutations were only found in plasma, and in 6 (8.3%) patients, PIK3CA mutations found in tissue were not detectable in ctDNA. In 49/93 plasma samples without detectable PIK3CA mutations, 22 (44.9%) samples had elevated tumour fractions, implying true negative results.ConclusionSiMSen-Seq-based detection of PIK3CA mutations in plasma shows advantageous concordance with the tissue analyses. A combination with an untargeted approach for detecting ctDNA fractions may confirm a negative PIK3CA result and enhance the performance of the SiMSen-Seq test.
Project description:ImportancePIK3CA mutations may be associated with outcomes of patients with ERBB2/HER2-positive early breast cancer (EBC).ObjectivesTo assess if PIK3CA mutations among patients with ERBB2/HER2-positive EBC are associated with treatment response and outcome, and if these associations vary by hormone receptor (HR) status or intrinsic molecular subtype (IMS).Design, setting, and participantsThis cohort study derived data on 184 patients from the phase 3 neoadjuvant Cancer and Leukemia Group B (CALGB) 40601 trial that enrolled patients with ERBB2/HER2-positive EBC in North America between January 1, 2008, and December 31, 2012. Participants received neoadjuvant paclitaxel with trastuzumab, lapatinib, or both. Statistical analysis was performed from March 23, 2022, to March 9, 2023.ExposuresGene expression profiling by RNA sequencing with Prediction Analysis of Microarray 50-determined IMS and PIK3CA mutations from whole-exome sequencing were obtained from pretreatment biopsies from 184 of 305 trial participants.Main outcomes and measuresThe primary end point was pathologic complete response (pCR) and the secondary end point of event-free survival (EFS). The association of PIK3CA mutations with pCR and EFS by HR status and IMS was estimated using logistic and Cox proportional hazards regression models.ResultsAll 184 participants were women, with a median age of 49 years (range 24-75 years). A total of 121 participants (66%) had clinical stage II tumors; 32 (17%) had PIK3CA mutations, most frequently H1047R (38% [12 of 32]) and E545K (22% [7 of 32]). PIK3CA mutations were present in 20 of 102 cases of HR-positive EBC (20%) and 12 of 82 cases HR-negative EBC (15%) and varied by IMS (luminal B, 9 of 25 [36%]; luminal A, 2 of 21 [10%]; and ERBB2/HER2-enriched tumors, 19 of 102 [19%]). Pathologic complete response rates were lower in PIK3CA mutated than PIK3CA wild type in the overall population (34% [11 of 32] vs 49% [74 of 152]; P = .14) and were significantly different among those receiving trastuzumab (30% [7 of 23] vs 54% [63 of 117]; P = .045). At a median follow-up of 9 years, PIK3CA mutations were significantly associated with worse EFS in the overall cohort (hazard ratio, 2.58 [95% CI, 1.24-5.35]; P = .01), which persisted in a multivariable model including pCR, HR status, stage, and IMS (hazard ratio, 2.52 [95% CI, 1.16-5.47]; P = .02). The negative association of PIK3CA mutation was significant in HR-positive (hazard ratio, 3.60 [95% CI, 1.45-8.96]; P = .006) and luminal subtypes (hazard ratio, 4.84 [95% CI, 1.08-21.70]; P = .04), but not in nonluminal and HR-negative tumors.Conclusions and relevanceIn ERBB2/HER2-positive EBC, PIK3CA mutations were associated with lower pCR rates and independently associated with worse long-term EFS. These findings appear to be associated with PIK3CA mutations in HR-positive and luminal EBC.