Purely satellite data-driven deep learning forecast of complicated tropical instability waves.
Ontology highlight
ABSTRACT: Forecasting fields of oceanic phenomena has long been dependent on physical equation-based numerical models. The challenge is that many natural processes need to be considered for understanding complicated phenomena. In contrast, rules of the processes are already embedded in the time-series observation itself. Thus, inspired by largely available satellite remote sensing data and the advance of deep learning technology, we developed a purely satellite data-driven deep learning model for forecasting the sea surface temperature evolution associated with a typical phenomenon: a tropical instability wave. During the testing period of 9 years (2010-2019), our model accurately and efficiently forecasts the sea surface temperature field. This study demonstrates the strong potential of the satellite data-driven deep learning model as an alternative to traditional numerical models for forecasting oceanic phenomena.
SUBMITTER: Zheng G
PROVIDER: S-EPMC7439441 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA