Unknown

Dataset Information

0

Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure.


ABSTRACT:

Background

MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF.

Methods and results

We found that microRNA-152 (miR-152) expression was upregulated in the failing human heart and experimental animal models of HF. Transgenic mice with cardiomyocyte-specific miR-152 overexpression developed systolic dysfunction (mean difference, -38.74% [95% CI, -45.73% to -31.74%]; P<0.001) and dilated cardiomyopathy. At the cellular level, miR-152 overexpression perturbed mitochondrial ultrastructure and dysregulated key genes involved in cardiomyocyte metabolism and inflammation. Mechanistically, we identified Glrx5 (glutaredoxin 5), a critical regulator of mitochondrial iron homeostasis and iron-sulfur cluster synthesis, as a direct miR-152 target. Finally, a proof-of-concept of the therapeutic efficacy of targeting miR-152 in vivo was obtained by utilizing a locked nucleic acid-based inhibitor of miR-152 (LNA 152) in a murine model of HF subjected to transverse aortic constriction. We demonstrated that animals treated with LNA-152 (n=10) showed preservation of systolic function when compared with locked nucleic acid-control treated animals (n=9; mean difference, 18.25% [95% CI, 25.10% to 11.39%]; P<0.001).

Conclusions

The upregulation of miR-152 expression in the failing myocardium contributes to HF pathophysiology. Preclinical evidence suggests that miR-152 inhibition preserves cardiac function in a model of pressure overload-induced HF. These findings offer new insights into the pathophysiology of HF and point to miR-152-Glrx5 axis as a potential novel therapeutic target.

SUBMITTER: LaRocca TJ 

PROVIDER: S-EPMC7439562 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pharmacological Silencing of MicroRNA-152 Prevents Pressure Overload-Induced Heart Failure.

LaRocca Thomas J TJ   Seeger Timon T   Prado Maricela M   Perea-Gil Isaac I   Neofytou Evgenios E   Mecham Brigham H BH   Ameen Mohamed M   Chang Alex Chia Yu ACY   Pandey Gaurav G   Wu Joseph C JC   Karakikes Ioannis I  

Circulation. Heart failure 20200312 3


<h4>Background</h4>MicroRNAs are small, noncoding RNAs that play a key role in gene expression. Accumulating evidence suggests that aberrant microRNA expression contributes to the heart failure (HF) phenotype; however, the underlying molecular mechanisms are not well understood. A better understanding of the mechanisms of action of microRNAs could potentially lead to targeted therapies that could halt the progression or even reverse HF.<h4>Methods and results</h4>We found that microRNA-152 (miR-  ...[more]

Similar Datasets

| S-EPMC3409693 | biostudies-literature
| S-EPMC6529920 | biostudies-literature
| S-EPMC6395621 | biostudies-literature
| S-EPMC6034464 | biostudies-literature
| S-EPMC5343521 | biostudies-literature
| S-EPMC4859364 | biostudies-other
| S-EPMC5707145 | biostudies-literature
| S-EPMC8093479 | biostudies-literature
| S-EPMC6850541 | biostudies-literature
| S-EPMC4655986 | biostudies-literature