Ontology highlight
ABSTRACT: Aims
To assess the impact of two different respiratory rates in hemodynamic, perfusion and ventilation parameters in a pediatric animal model of cardiac arrest (CA).Methods
An experimental randomized controlled trial was carried out in 50 piglets under asphyxial CA. After ROSC, they were randomized into two groups: 20 and 30 respirations per minute (rpm). Hemodynamic, perfusion and ventilation parameters were measured 10 minutes after asphyxia, just before ROSC and at 5, 15, 30 and 60 minutes after ROSC. Independent medians test, Kruskal-Wallis test and χ2 test, were used to compare continuous and categorical variables, respectively. Spearman's Rho was used to assess correlation between continuous variables. A p-value <0.05 was considered significant.Results
Arterial partial pressure of carbon dioxide (PaCO2) was significantly lower in the 30 rpm group after 15 minutes (41 vs. 54.5 mmHg, p <0.01), 30 minutes (39.5 vs. 51 mmHg, p < 0.01) and 60 minutes (36.5 vs. 48 mmHg, p = 0.02) of ROSC. The percentage of normoventilated subjects (PaCO2 30-50 mmHg) was significantly higher in the 30 rpm group throughout the experiment. pH normalization occurred faster in the 30 rpm group with significant differences at 60 minutes (7.40 vs. 7.34, p = 0.02). Lactic acid levels were high immediately after ROSC in both groups, but were significantly lower in the 20 rpm group at 30 (3.7 vs. 4.7 p = 0.04) and 60 minutes (2.6 vs. 3.6 p = 0.03).Conclusions
This animal model of asphyxial CA shows that a respiratory rate of 30 rpm is more effective to reach normoventilation than 20 rpm in piglets after ROSC. This ventilation strategy seems to be safe, as it does not cause hyperventilation and does not affect hemodynamics or cerebral tissue perfusion.
SUBMITTER: Lopez J
PROVIDER: S-EPMC7440626 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
López Jorge J Arias Patricia P Domenech Beatriz B Horcajo Daniel D Nocete Juan Pablo JP Zamora Laura L Fernández Sarah Nicole SN López-Herce Jesús J
PloS one 20200820 8
<h4>Aims</h4>To assess the impact of two different respiratory rates in hemodynamic, perfusion and ventilation parameters in a pediatric animal model of cardiac arrest (CA).<h4>Methods</h4>An experimental randomized controlled trial was carried out in 50 piglets under asphyxial CA. After ROSC, they were randomized into two groups: 20 and 30 respirations per minute (rpm). Hemodynamic, perfusion and ventilation parameters were measured 10 minutes after asphyxia, just before ROSC and at 5, 15, 30 a ...[more]