Project description:ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite considerable advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effective pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: (1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies 'precision medicines.' It is hoped that the substantial number of studies globally investigating potential therapies for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this devastating form of ARDS.
Project description:In the last decades lung ultrasound (LUS) has become of crucial importance in the evaluation and monitoring of a widely range of pulmonary diseases. One of the major benefits which favours this examination, is that this is a non-invasive, low-cost and radiation-free imaging modality which allows repeated imaging. LUS plays an important role in a wide range of pathologies, including cardiogenic oedema, acute respiratory distress syndrome and fibrosis. Specific LUS findings have proved useful and predictive of acute respiratory distress syndrome which is of particular relevance in the suspicion and monitoring of patients with lung disease. Furthermore, several studies have confirmed the role of LUS in the screening of interstitial lung diseases in connective tissue diseases. Given these data, LUS will likely play an important role in the management of COVID-19 patients from identification of specific abnormalities corresponding to definite pneumonia phases and CT scans findings. In addition, LUS could allow reduction in the exposure of health-care workers to potential infection. Herein, we provide a summary on emerging role of lung ultrasound in COVID-19 pneumonia.
Project description:ObjectivesThe COVID-19 pandemic necessitates time-sensitive policy and implementation decisions regarding new therapies in the face of uncertainty. This study aimed to quantify consequences of approving therapies or pursuing further research: immediate approval, use only in research, approval with research (eg, emergency use authorization), or reject.MethodsUsing a cohort state-transition model for hospitalized patients with COVID-19, we estimated quality-adjusted life-years (QALYs) and costs associated with the following interventions: hydroxychloroquine, remdesivir, casirivimab-imdevimab, dexamethasone, baricitinib-remdesivir, tocilizumab, lopinavir-ritonavir, interferon beta-1a, and usual care. We used the model outcomes to conduct cost-effectiveness and value of information analyses from a US healthcare perspective and a lifetime horizon.ResultsAssuming a $100 000-per-QALY willingness-to-pay threshold, only remdesivir, casirivimab-imdevimab, dexamethasone, baricitinib-remdesivir, and tocilizumab were (cost-) effective (incremental net health benefit 0.252, 0.164, 0.545, 0.668, and 0.524 QALYs and incremental net monetary benefit $25 249, $16 375, $54 526, $66 826, and $52 378). Our value of information analyses suggest that most value can be obtained if these 5 therapies are approved for immediate use rather than requiring additional randomized controlled trials (RCTs) (net value $20.6 billion, $13.4 billion, $7.4 billion, $54.6 billion, and $7.1 billion), hydroxychloroquine (net value $198 million) is only used in further RCTs if seeking to demonstrate decremental cost-effectiveness and otherwise rejected, and interferon beta-1a and lopinavir-ritonavir are rejected (ie, neither approved nor additional RCTs).ConclusionsEstimating the real-time value of collecting additional evidence during the pandemic can inform policy makers and clinicians about the optimal moment to implement therapies and whether to perform further research.
Project description:Type 2 diabetes mellitus, obesity, hypertension, and other associated metabolic complications have been demonstrated as a crucial contributor to the enhanced morbidity and mortality of patients with coronavirus disease 2019 (COVID-19). Data on the interplay between metabolic comorbidities and the outcomes in patients with COVID-19 have been emerging and rapidly increasing. This implies a mechanistic link between metabolic diseases and COVID-19 resulting in the exacerbation of the condition. Nonetheless, new evidences are emerging to support insulin-mediated aggressive glucose-lowering treatment as a possible trigger of high mortality rate in diabetic COVID-19 patients, putting the clinician in a confounding and difficult dilemma for the treatment of COVID-19 patients with metabolic comorbidities. Thus, this review discusses the pathophysiological link among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), metabolic complications, and severe inflammation in COVID-19 development, especially in those with multi-organ injuries. We discuss the influence of several routinely used drugs in COVID-19 patients, including anti-inflammatory and anti-coagulant drugs, antidiabetic drugs, renin-angiotensin-aldosterone system inhibitors. Especially, we provide a balanced overview on the clinical application of glucose-lowering drugs (insulin and metformin), angiotensin-converting-enzyme inhibitors, and angiotensin receptor blockers. Although there is insufficient evidence from clinical or basic research to comprehensively reveal the mechanistic link between adverse outcomes in COVID-19 and metabolic comorbidities, it is hoped that the update in the current review may help to better outline the optimal strategies for clinical management of COVID-19 patients with metabolic comorbidities.
Project description:Coronavirus disease 2019 (SARS-CoV2) is an active global health threat for which treatments are desperately being sought. Even though most people infected experience mild to moderate respiratory symptoms and recover with supportive care, certain vulnerable hosts develop severe clinical deterioration. While several drugs are currently being investigated in clinical trials, there are currently no approved treatments or vaccines for COVID-19 and hence there is an unmet need to explore additional therapeutic options. At least three inflammatory disorders or syndromes associated with immune dysfunction have been described in the context of cellular therapy. Specifically, Cytokine Release Syndrome (CRS), Immune Reconstitution Inflammatory Syndrome (IRIS), and Secondary Hemophagocytic Lymphohistiocytosis (sHLH) all have clinical and laboratory characteristics in common with COVID19 and associated therapies that could be worth testing in the context of clinical trials. Here we discuss these diseases, their management, and potential applications of these treatment in the context of COVID-19. We also discuss current cellular therapies that are being evaluated for the treatment of COVID-19 and/or its associated symptoms.
Project description:Metatranscriptomic analysis identifies a state of pathogen dominance and suppressed pulmonary immune signaling in critically ill COVID-19 patients with secondary bacterial pneumonia.
Project description:BackgroundThe COVID-19 pandemic has caused the relocation of huge financial resources to departments dedicated to infected patients, at the expense of those suffering from other pathologies.AimTo compare clinical features and outcomes in COVID-19 pneumonia and non-COVID-19 pneumonia patients.Patients and methods53 patients (35 males, mean age 61.5 years) with COVID-19 pneumonia and 50 patients (32 males, mean age 72.7 years) with non-COVID-19 pneumonia, consecutively admitted between March and May 2020 were included. Clinical, laboratory and radiological data at admission were analyzed. Duration of hospitalization and mortality rates were evaluated.ResultsAmong the non-COVID patients, mean age, presence of comorbidities (neurological diseases, chronic kidney disease and chronic obstructive pulmonary disease), Charlson Comorbidity Index and risk factors (tobacco use and protracted length of stay in geriatric healthcare facilities) were higher than in COVID patients. The non-COVID-19 pneumonia group showed a higher (24% vs. 17%), although not statistically significant in-hospital mortality rate; the average duration of hospitalization was longer for COVID patients (30 vs. 9 days, p = .0001).ConclusionsIn the early stages of the COVID pandemic, our centre noted no statistical difference in unadjusted in-hospital mortality between COVID and non-COVID patients. Non-COVID patients had higher Charlson Comorbidity Scores, reflecting a greater disease burden in this population.Key MessagesIn March 2020, the COVID-19 disease was declared a pandemic, with enormous consequences for the organization of health systems and in terms of human lives; this has caused the relocation of huge financial resources to departments dedicated to infected patients, at the expense of those suffering from other pathologies.Few published reports have compared COVID-19 and non-COVID-19 pneumonia. In our study, performed in a geographic area with a low prevalence of SARS-CoV-2 infection, we found few statistically significant differences in terms of clinical characteristics between the two groups analyzed.In the early stages of the COVID pandemic, our centre noted no statistical difference in unadjusted in-hospital mortality between COVID and non-COVID patients. Non-COVID patients had higher Charlson Comorbidity Scores, reflecting a greater disease burden in this population.
Project description:PurposeAs COVID-19 disease progresses, the host inflammatory response contributes to hypoxemia and severe and critical illness. In these latter stages of disease, patients may benefit from immunomodulatory therapies to control the aberrant host inflammatory response. In this review, we provide an overview of these therapies and provide summaries of the studies that led to issuance of FDA Emergency Use Authorization or recommendation by the Infectious Diseases Society of America (IDSA).Materials and methodsWe reviewed English-language studies, Emergency Use Authorizations (EUAs), and guidelines from March 2020 to present.Conclusion and relevanceThere are several therapies with proposed benefit in severe and critical COVID-19 disease. Few have been issued FDA EUA or recommendation by the Infectious Diseases Society of America (IDSA). Physicians should be familiar with the evidence supporting use of these therapies and the patient populations most likely to benefit from each.
Project description:A new global pandemic of coronavirus disease 2019 (COVID-19) has resulted in high mortality and morbidity. Currently numerous drugs are under expedited investigations without well-established safety or efficacy data. Pharmacogenomics may allow individualization of these drugs thereby improving efficacy and safety. In this review, we summarized the pharmacogenomic literature available for COVID-19 drug therapies including hydroxychloroquine, chloroquine, azithromycin, remdesivir, favipiravir, ribavirin, lopinavir/ritonavir, darunavir/cobicistat, interferon beta-1b, tocilizumab, ruxolitinib, baricitinib, and corticosteroids. We searched PubMed, reviewed the Pharmacogenomics Knowledgebase (PharmGKB®) website, Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines, the U.S. Food and Drug Administration (FDA) pharmacogenomics information in the product labeling, and the FDA pharmacogenomics association table. We found several drug-gene variant pairs that may alter the pharmacokinetics of hydroxychloroquine/chloroquine (CYP2C8, CYP2D6, SLCO1A2, and SLCO1B1); azithromycin (ABCB1); ribavirin (SLC29A1, SLC28A2, and SLC28A3); and lopinavir/ritonavir (SLCO1B1, ABCC2, CYP3A). We also identified other variants, that are associated with adverse effects, most notable in hydroxychloroquine/chloroquine (G6PD; hemolysis), ribavirin (ITPA; hemolysis), and interferon β -1b (IRF6; liver toxicity). We also describe the complexity of the risk for QT prolongation in this setting because of additive effects of combining more than one QT-prolonging drug (i.e., hydroxychloroquine/chloroquine and azithromycin), increased concentrations of the drugs due to genetic variants, along with the risk of also combining therapy with potent inhibitors. In conclusion, although direct evidence in COVID-19 patients is lacking, we identified potential actionable genetic markers in COVID-19 therapies. Clinical studies in COVID-19 patients are deemed warranted to assess potential roles of these markers.