Unknown

Dataset Information

0

Effect of Monocyte Seeding Density on Dendritic Cell Generation in an Automated Perfusion-Based Culture System.


ABSTRACT: Dendritic cells (DCs) are increasingly important for research and clinical use but obtaining sufficient numbers of dendritic cells is a growing challenge. We systemically investigated the effect of monocyte (MO) seeding density on the generation of monocyte-derived immature DCs (iDCs) in MicroDEN, a perfusion-based culture system, as well as 6-well plates. Cell surface markers and the ability of the iDCs to induce proliferation of allogeneic T cells were examined. The data shows a strong relationship between iDC phenotype, specifically CD80/83/86 expression, and T cell proliferation. MicroDEN generated iDCs proved better than well plate generated iDCs at inducing T cell proliferation within the 200k-600k MO/cm2 seeding density range studied. We attribute this to perfusion in MicroDEN which supplies fresh differentiation medium continuously to the differentiating MOs while concurrently removing depleted medium and toxic byproducts of cellular respiration. MicroDEN generated fewer iDCs on a normalized basis than the well plates at lower MO seeding densities but generated equivalent numbers of iDCs at 600k MO seeding density. These results demonstrate that MicroDEN is capable of generating greater numbers of iDCs with less manual work than standard well plate culture and the MicroDEN generated iDCs have greater ability to induce T cell proliferation.

SUBMITTER: Kozbial A 

PROVIDER: S-EPMC7441814 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of Monocyte Seeding Density on Dendritic Cell Generation in an Automated Perfusion-Based Culture System.

Kozbial Andrew A   Bhandary Lekhana L   Murthy Shashi K SK  

Biochemical engineering journal 20190705


Dendritic cells (DCs) are increasingly important for research and clinical use but obtaining sufficient numbers of dendritic cells is a growing challenge. We systemically investigated the effect of monocyte (MO) seeding density on the generation of monocyte-derived immature DCs (iDCs) in MicroDEN, a perfusion-based culture system, as well as 6-well plates. Cell surface markers and the ability of the iDCs to induce proliferation of allogeneic T cells were examined. The data shows a strong relatio  ...[more]

Similar Datasets

| S-EPMC5946316 | biostudies-literature
2015-09-14 | E-MTAB-3878 | biostudies-arrayexpress
| S-EPMC7320070 | biostudies-literature
| S-EPMC7145147 | biostudies-literature
| S-EPMC8789921 | biostudies-literature
| S-EPMC7643915 | biostudies-literature
| S-EPMC9899206 | biostudies-literature
| S-EPMC8533112 | biostudies-literature
| S-EPMC9202848 | biostudies-literature
| S-EPMC6783514 | biostudies-literature