Texture Analysis of F-18 Fluciclovine PET/CT to Predict Biochemically Recurrent Prostate Cancer: Initial Results.
Ontology highlight
ABSTRACT: Predicting biochemical recurrence of prostate cancer is imperative for initiating early treatment, which can improve the outcome of cancer treatment. However, because of inter- and intrareader variability in interpretation of F-18 fluciclovine positron emission tomography/computed tomography (PET/CT), it is difficult to reliably discern between necrotic tissue owing to radiation therapy and tumor tissue. Our goal is to develop a computational methodology using Haralick texture analysis that can be used as an adjunct tool to improve and standardize the interpretation of F-18 fluciclovine PET/CT to identify biochemical recurrence of prostate cancer. Four main textural features were chosen by variable selection procedure using least absolute shrinkage and selection operator logistic regression and bootstrapping, and then included as predictors in subsequent logistic ridge regression model for prediction (n?=?28). Age at prostatectomy, prostate-specific antigen (PSA) level before the PET/CT imaging, and number of days between the prostate-specific antigen measurement and PET/CT imaging were also included in the prediction model. The overfitting-corrected area under the curve and Brier score of the proposed model were 0.94 (95% CI: 0.81, 1.00) and 0.12 (95% CI: 0.03, 0.23), respectively. Compared with a model with textural features (TI model) and that with only clinical information (CI model), the proposed model achieved 2% and 32% increase in AUC and 8% and 48% reduction in Brier score, respectively. Combining Haralick textural features based on the PET/CT imaging data with clinical information shows a high potential of enhanced prediction of the biochemical recurrence of prostate cancer.
SUBMITTER: Kang H
PROVIDER: S-EPMC7442090 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA