Ontology highlight
ABSTRACT: Background
Genetic factors that influence kidney traits have been understudied for low-frequency and ancestry-specific variants.Methods
This study used imputed whole-genome sequencing from the Trans-Omics for Precision Medicine project to identify novel loci for estimated glomerular filtration rate and urine albumin-to-creatinine ratio in up to 12 207 Hispanics/Latinos. Replication was performed in the Women's Health Initiative and the UK Biobank when variants were available.Results
Two low-frequency intronic variants were associated with estimated glomerular filtration rate (rs58720902 at AQR, minor allele frequency=0.01, P=1.6×10-8) or urine albumin-to-creatinine ratio (rs527493184 at ZBTB16, minor allele frequency=0.002, P=1.1×10-8). An additional variant at PRNT (rs2422935, minor allele frequency=0.54, P=2.89×10-8) was significantly associated with estimated glomerular filtration rate in meta-analysis with replication samples. We also identified 2 known loci for urine albumin-to-creatinine ratio (BCL2L11 rs116907128, P=5.6×10-8 and HBB rs344, P=9.3×10-11) and validated 8 loci for urine albumin-to-creatinine ratio previously identified in the UK Biobank.Conclusions
Our study shows gains in gene discovery when using dense imputation from multi-ethnic whole-genome sequencing data in admixed Hispanics/Latinos. It also highlights limitations in genetic research of kidney traits, including the lack of suitable replication samples for variants that are more common in non-European ancestry and those at low frequency in populations.
SUBMITTER: Qian H
PROVIDER: S-EPMC7442703 | biostudies-literature |
REPOSITORIES: biostudies-literature