Unknown

Dataset Information

0

Decompensation in Critical Care: Early Prediction of Acute Heart Failure Onset.


ABSTRACT: BACKGROUND:Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation and heart failure to evaluate physiological states and patient outcomes. OBJECTIVE:The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure, using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the United States. METHODS:We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation and highlight important features from combinations of model inputs from dissimilar data. RESULTS:The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs revealed a point of diminishing returns where additional vital signs data did not continue to improve results. CONCLUSIONS:Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a 200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early and continuous prediction of patient decompensation.

SUBMITTER: Essay P 

PROVIDER: S-EPMC7442938 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Decompensation in Critical Care: Early Prediction of Acute Heart Failure Onset.

Essay Patrick P   Balkan Baran B   Subbian Vignesh V  

JMIR medical informatics 20200807 8


<h4>Background</h4>Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively anal  ...[more]

Similar Datasets

| S-EPMC8318460 | biostudies-literature
| S-EPMC8006602 | biostudies-literature
| S-EPMC8615401 | biostudies-literature
| S-EPMC7683469 | biostudies-literature
| S-EPMC8497203 | biostudies-literature
| S-EPMC7001573 | biostudies-literature
| S-EPMC11307874 | biostudies-literature
| S-EPMC9310393 | biostudies-literature
| S-EPMC4815117 | biostudies-other
| S-EPMC8353807 | biostudies-literature