Project description:Data suggest that interleukin (IL)-6 blockade could reduce mortality in severe COVID-19, yet IL-6 is only modestly elevated in most patients. Chen et al. describe the role of soluble interleukin-6 receptor (sIL-6R) in IL-6 trans-signaling and how understanding the IL-6:sIL-6R axis might help define and treat COVID-19 cytokine storm syndrome.
Project description:Corona virus disease 2019 (COVID-19) has caused a global outbreak and severely posed threat to people's health and social stability. Mounting evidence suggests that immunopathological changes, including diminished lymphocytes and elevated cytokines, are important drivers of disease progression and death in coronavirus infections. Cytokine storm not only limits further spread of virus in the body but also induces secondary tissue damage through the secretion of large amounts of active mediators and inflammatory factors. It has been determined that cytokine storm is a major cause of deaths in COVID-19; therefore, in order to reverse the deterioration of severe and critically ill patients from this disease, the cytokine storm has become a key therapeutic target. Although specific mechanisms of the occurrences of cytokine storms in COVID-19 have not been fully illuminated, hyper-activated innate immune responses, and dysregulation of ACE2 (angiotensin converting enzyme 2) expression and its downstream pathways might provide possibilities. Tailored immunoregulatory therapies have been applied to counteract cytokine storms, such as inhibition of cytokines, corticosteroids, blood purification therapy, and mesenchymal stem cell therapy. This review will summarize advances in the research of cytokine storms induced by COVID-19, as well as potential intervention strategies to control cytokine storms.
Project description:A cytokine storm is a hyperinflammatory state secondary to the excessive production of cytokines by a deregulated immune system. It manifests clinically as an influenza-like syndrome, which can be complicated by multi-organ failure and coagulopathy, leading, in the most severe cases, even to death. The term cytokine storm was first used in 1993 to describe the graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. It was then reused to define the adverse syndromes secondary to the administration of immunostimulating agents, such as anti-CD28 antibodies or bioengineered immune cells, i.e., CAR T-cell therapy. Currently, the concept of cytokine storm has been better elucidated and extended to the pathogenesis of many other conditions, such as sepsis, autoinflammatory disease, primary and secondary hemophagocytic lymphohistiocytosis, and multicentric Castleman disease. Moreover, cytokine storm has recently emerged as a key aspect in the novel Coronavirus disease 2019, as affected patients show high levels of several key pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, TNF-α, IFN-γ, IP-10, GM-CSF, MCP-1, and IL-10, some of which also correlate with disease severity. Therefore, since the onset of the pandemic, numerous agents have been tested in the effort to mitigate the cytokine storm in COVID-19 patients, some of which are effective in reducing mortality, especially in critically ill patients, and are now becoming standards of care, such as glucocorticoids or some cytokine inhibitors. However, the challenge is still far from being met, and other therapeutic strategies are being tested in the hope that we can eventually overcome the disease.
Project description:BackgroundAngiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients.MethodsUsing GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients.ResultsHundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm.ConclusionsThere are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.