Correction: Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations.
Ontology highlight
ABSTRACT: [This corrects the article DOI: 10.1371/journal.pone.0230151.].
Correction: Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations.
PloS one 20200825 8
[This corrects the article DOI: 10.1371/journal.pone.0230151.]. ...[more]
Project description:The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terrestrial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and range fragmentations due to retreat into different glacial refugia. Thus, several extant Mediterranean bird species have diversified by surviving glaciations in different hospitable refugia and subsequently expanded their distribution ranges during the Holocene. Such a scenario was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised 18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspecies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruction dated the onset of the entire Holarctic radiation of three Nannus species to the early Pleistocene. In the Eurasian Wren, two North African subspecies represented separate basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juniperi), being only distantly related to other Mediterranean populations. Although N. troglodytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis), respective nodes did not receive strong statistical support. In contrast, paraphyly of the Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian populations of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies but formed a sister clade to a highly diverse European clade (including nominate N. t. troglodytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian populations were split into a western clade (Europe, Caucasus) and an eastern clade (Central Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryptic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.
Project description:BACKGROUND: The avian Order Passeriformes is an enormously species-rich group, which comprises almost 60% of all living bird species. This diverse order is believed to have originated before the break-up of Gondwana in the late Cretaceous. However, previous molecular dating studies have relied heavily on the geological split between New Zealand and Antarctica, assumed to have occurred 85-82 Mya, for calibrating the molecular clock and might thus be circular in their argument. RESULTS: This study provides a time-scale for the evolution of the major clades of passerines using seven nuclear markers, five taxonomically well-determined passerine fossils, and an updated interpretation of the New Zealand split from Antarctica 85-52 Mya in a Bayesian relaxed-clock approach. We also assess how different interpretations of the New Zealand-Antarctica vicariance event influence our age estimates. Our results suggest that the diversification of Passeriformes began in the late Cretaceous or early Cenozoic. Removing the root calibration for the New Zealand-Antarctica vicariance event (85-52 Mya) dramatically increases the 95% credibility intervals and leads to unrealistically old age estimates. We assess the individual characteristics of the seven nuclear genes analyzed in our study. Our analyses provide estimates of divergence times for the major groups of passerines, which can be used as secondary calibration points in future molecular studies. CONCLUSIONS: Our analysis takes recent paleontological and geological findings into account and provides the best estimate of the passerine evolutionary time-scale currently available. This time-scale provides a temporal framework for further biogeographical, ecological, and co-evolutionary studies of the largest bird radiation, and adds to the growing support for a Cretaceous origin of Passeriformes.
Project description:A revised phylogeny of nuthatches (Aves, Passeriformes, Sitta) reveals insight in intra- and interspecific diversification patterns in the Palearctic
Project description:New species are sometimes known to arise as a consequence of the dispersal and establishment of populations in new areas. It has nevertheless been difficult to demonstrate an empirical link between rates of dispersal and diversification, partly because dispersal abilities are challenging to quantify. Here, using wing morphology as a proxy for dispersal ability, we assess this relationship among the global radiation of corvoid birds. We found that species distributions are associated with wing shape. Widespread species (occurring on both islands and continents), and those that are migratory, exhibit wing morphologies better adapted to long-distance flight compared with sedentary continental or insular forms. Habitat preferences also strongly predict wing form, with species that occur in canopies and/or areas of sparse vegetation possessing dispersive morphologies. By contrast, we found no significant differences in diversification rates among either the migratory or habitat classifications, but species distributed in island settings diversify at higher rates than those found on continents. This latter finding may reflect the elevated dispersal capabilities of widespread taxa, facilitating the radiation of these lineages across insular areas. However, as the correlations between wing morphology and diversification rates were consistently weak throughout our dataset, this suggests that historical patterns of diversification are not particularly well reflected by present-day wing morphology.
Project description:Developing and validating methods to determine trends in populations of threatened species is essential for evaluating the effectiveness of conservation interventions. For cryptic species inhabiting remote environments, this can be particularly challenging. Rock wrens, Xenicus gilviventris, are small passerines endemic to the alpine zone of southern New Zealand. They are highly vulnerable to predation by introduced mammalian predators. Establishing a robust, cost-effective monitoring tool to evaluate population trends in rock wrens is a priority for conservation of both the species and, more broadly, as part of a suite of indicators for evaluating effectiveness of management in New Zealand's alpine ecosystems. We assessed the relative accuracy and precision of three population estimation techniques (mark-resight, distance sampling and simple counts on line transects) for two populations of rock wrens in the Southern Alps over six breeding seasons (2012-2018). The performance of these population estimators was compared to known rock wren population size derived from simultaneous territory mapping. Indices of abundance derived from counts on transects were correlated with territory mapping at both study areas, and performed better than either mark-resight methods or distance sampling. Simple counts on standardised line transects are a highly cost-effective method of monitoring birds because they do not require banding a population. As such, we recommend that line transect counts using the design outlined in this paper be adopted as a standard method for long-term monitoring of rock wren populations. Although species-specific testing is required to validate use of low-cost population indices, our results may have utility for the monitoring of other cryptic passerines in relatively open habitats.
Project description:Passeriformes is the most diverse bird order. Nevertheless, passerines have a remarkably poor early fossil record. In addition, high osteological homoplasy across passerines makes partial specimens difficult to systematically assign precisely. Here we describe one of the few earliest fossil passerines, from the early Oligocene (ca 30 Ma) of southern France, and one of the best preserved and most complete. This fossil can be conservatively assigned to Tyrannida, a subclade of the New World Tyranni (Suboscines), i.e. of the Tyrannides. A most probably stem-representative of Tyrannida, the new fossil bears strong resemblance with some manakins (Pipridae), possibly due to plesiomorphy. Furthermore, it yields a new point of calibration for molecular phylogenies, already consistent with the age of the fossil. Tyrannida, and the more inclusive Tyrannides, are today confined to the New World. Therefore, the new fossil calls for scenarios of transatlantic crossing during or near the Oligocene. Later, the European part of the distribution of the Tyrannida disappeared, leading to a relictual modern New World distribution of this clade, a pattern known in other avian clades. The history of Tyrannida somehow mirrors that of the enigmatic Sapayoa aenigma, sole New World representative of the Eurylaimides (Old World Tyranni), with transatlantic crossing probably caused by similar events.
Project description:Stachyris ruficeps are commonly found in the eastern Himalayas and south China. In our study, we reported the complete mitogenome and obtain basic genetic information of S. ruficeps for the first time. The complete mitochondrial genomes of S. ruficeps (16 885bp in length) had 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 2 control regions. All of the 13 PCGs were initiated by ATG. All the genes in S. ruficeps were distributed on the H-strand, except for the ND6 gene and eight tRNA genes which were encoded on the L-strand.
Project description:Multiple sources of evidence show that the skuas (Aves:Stercorariidae) are a monophyletic group, closely related to gulls (Laridae. On morphological and behavioural evidence the Stercorariidae are divided into two widely divergent genera, Catharacta and Stercorarius, consistent with observed levels of nuclear and mitochondrial gene divergence. Catharacta skuas are large-bodied and with one exception breed in the Southern Hemisphere. Stercorarius skuas otherwise known as jaegers) are smaller bodied and breed exclusively in the Northern Hemisphere. Evidence from both mitochondrial and nuclear genomes and from ectoparasitic lice (Insecta:Phthiraptera) shows that the Pomarine skua, S. pomarinus, which has been recognized as being somewhat intermediate in certain morphological and behavioural characteristics, is much more closely related to species in the genus Catharacta, especially to the Northern Hemisphere-breeding Great skua, C. skua, than it is to the other two Stercorarius skuas, the Arctic skua, S. parasiticus and the Longtailed skua, S. longicaudus. Three possible explanations that might account for this discordant aspect of skua phylogeny are explored. These involve (i) the segregation of ancestral polymorphism, (ii) convergent evolution of morphology and behaviour or (iii) inter-generic hybridization. The available evidence from both nuclear and mitochondrial genomes does not exclude any of these hypotheses. Thus, resolution of this enigma of skua phylogeny awaits further work.
Project description:Synopsis Dietary requirements and acquisition strategies change throughout ontogeny across various clades of tetrapods, including birds. For example, birds hatch with combinations of various behavioral, physiological, and morphological factors that place them on an altricial-precocial spectrum. Passeriformes (=songbirds) in particular, a family constituting approximately more than half of known bird species, displays the most drastic difference between hatchling and adults in each of these aspects of their feeding biology. How the shift in dietary resource acquisition is managed during ontogeny alongside its relationship to the morphology of the feeding apparatus has been largely understudied within birds. Such efforts have been hampered partly due to the small size of many birds and the diminutive jaw musculature they employ. In this study, we used standard and diffusible iodine-based contrast-enhanced computed tomography in conjunction with digital dissection to quantify and describe the cranial musculature of the Black-throated Finch (Poephila cincta) at fledgling and adult stages. Our results reveal that in both the fledgling and the adult, cranial musculature shows clear and complex partitioning in the Musculus adductor mandibulae externus that is consistent with other families within Passeriformes. We quantified jaw-muscle sizes and found that the adult showed a decrease in muscle mass in comparison to the fledgling individual. We propose that this could be the result of low sample size or a physiological effect of parental care in Passeriformes. Our study shows that high-resolution visualization techniques are informative at revealing morphological discrepancies for studies that involve small specimens such as Passeriformes especially with careful specimen selection criteria.