Unknown

Dataset Information

0

Involvement of Reactive Oxygen Species in the Hepatorenal Toxicity of Actinomycin V In Vitro and In Vivo.


ABSTRACT: The high toxicity of actinomycin D (Act D) severely limits its use as a first-line chemotherapeutic agent in the clinic. Actinomycin V (Act V), an analog of Act D, exhibited strong anticancer activity in our previous studies. Here, we provide evidence that Act V has less hepatorenal toxicity than Act D in vitro and in vivo, associated with the reactive oxygen species (ROS) pathway. Compared to Act D, Act V exhibited considerably stronger sensitivity for cancer cells and less toxicity to human normal liver LO-2 and human embryonic kidney 293T cells using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. Notably, Act V caused less damage to both the liver and kidney than Act D in vivo, indicated by organ to body weight ratios, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum creatinine (Scr) levels. Further experiments showed that the ROS pathway is involved in Act V-induced hepatorenal toxicity. Act V generates ROS and accumulates malondialdehyde (MDA), reducing levels of superoxide dismutase (SOD) and glutathione (GSH) in LO-2 and 293T cells. These findings indicate that Act V induces less hepatorenal toxicity than Act D in vitro and in vivo and merits further development as a potential therapeutic agent for the treatment of cancer.

SUBMITTER: Jia FJ 

PROVIDER: S-EPMC7460479 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Involvement of Reactive Oxygen Species in the Hepatorenal Toxicity of Actinomycin V In Vitro and In Vivo.

Jia Fu-Juan FJ   Han Zhuo Z   Ma Jia-Hui JH   Jiang Shi-Qing SQ   Zhao Xing-Ming XM   Ruan Hang H   Xie Wei-Dong WD   Li Xia X  

Marine drugs 20200815 8


The high toxicity of actinomycin D (Act D) severely limits its use as a first-line chemotherapeutic agent in the clinic. Actinomycin V (Act V), an analog of Act D, exhibited strong anticancer activity in our previous studies. Here, we provide evidence that Act V has less hepatorenal toxicity than Act D in vitro and in vivo, associated with the reactive oxygen species (ROS) pathway. Compared to Act D, Act V exhibited considerably stronger sensitivity for cancer cells and less toxicity to human no  ...[more]

Similar Datasets

| S-EPMC7072296 | biostudies-literature
| S-EPMC3033717 | biostudies-literature
| S-EPMC3731989 | biostudies-literature
| S-EPMC6874877 | biostudies-literature
| S-EPMC8660821 | biostudies-literature
| S-EPMC2804214 | biostudies-literature
| S-EPMC3931445 | biostudies-literature
| S-EPMC5100026 | biostudies-literature
| S-EPMC4130482 | biostudies-literature
| S-EPMC6239169 | biostudies-literature