Unknown

Dataset Information

0

In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells.


ABSTRACT: Investigation of the potential for nanomaterials to generate immunogenic effects is a key aspect of a robust preclinical evaluation. In combination with physicochemical characterization, such assessments also provide context for how material attributes influence biological outcomes. Furthermore, appropriate models for these assessments allow accurate in vitro to in vivo extrapolation, which is vital for the mechanistic understanding of nanomaterial action. Here we have assessed the immunogenic impact of a small panel of commercially available and in-house prepared nanomaterials on primary human peripheral blood mononuclear cells (PBMCs). A diethylaminoethyl-dextran (DEAE-dex) functionalized superparamagnetic iron oxide nanoparticle (SPION) generated detectable quantities of tumor necrosis factor ? (TNF?), interleukin-1? (IL-1?), and IL-10, the only tested material to do so. The human leukemia monocytic cell line THP-1 was used to assess the potential for the nanomaterial panel to affect cellular oxidation-reduction (REDOX) via measurement of reactive oxygen species and reduced glutathione. Negatively charged sulfonate-functionalized polystyrene nanoparticles demonstrated a size-related trend for the inhibition of caspase-1, which was not observed for amine-functionalized polystyrene of similar sizes. Silica nanoparticles (310 nm) resulted in a 93% increase in proliferation compared to the untreated control (p < 0.01). No other nanomaterial treatments resulted in significant change from that of unstimulated PBMCs. Responses to the nanomaterials in the assays described demonstrate the utility of primary cells as ex vivo models for nanomaterial biological impact.

SUBMITTER: David CAW 

PROVIDER: S-EPMC7460653 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

In Vitro Determination of the Immunogenic Impact of Nanomaterials on Primary Peripheral Blood Mononuclear Cells.

David Christopher A W CAW   Barrow Michael M   Murray Patricia P   Rosseinsky Matthew J MJ   Owen Andrew A   Liptrott Neill J NJ  

International journal of molecular sciences 20200805 16


Investigation of the potential for nanomaterials to generate immunogenic effects is a key aspect of a robust preclinical evaluation. In combination with physicochemical characterization, such assessments also provide context for how material attributes influence biological outcomes. Furthermore, appropriate models for these assessments allow accurate in vitro to in vivo extrapolation, which is vital for the mechanistic understanding of nanomaterial action. Here we have assessed the immunogenic i  ...[more]

Similar Datasets

| S-EPMC10567873 | biostudies-literature
| S-EPMC3509337 | biostudies-literature
| S-EPMC6855111 | biostudies-literature
| S-EPMC4390276 | biostudies-literature
| S-EPMC109758 | biostudies-literature
| S-EPMC4366165 | biostudies-literature
2012-07-16 | PRD000731 | Pride
2012-07-16 | PRD000668 | Pride
| S-EPMC7435832 | biostudies-literature
| S-EPMC6400269 | biostudies-literature