Project description:BackgroundAKI is common among hospitalized patients with coronavirus disease 2019 (COVID-19) and is an independent risk factor for mortality. Although there are numerous potential mechanisms underlying COVID-19-associated AKI, our current knowledge of kidney pathologic findings in COVID-19 is limited.MethodsWe examined the postmortem kidneys from 42 patients who died of COVID-19. We reviewed light microscopy findings in all autopsies and performed immunofluorescence, electron microscopy, and in situ hybridization studies for SARS-CoV-2 on a subset of samples.ResultsThe cohort had a median age of 71.5 years (range, 38-97 years); 69% were men, 57% were Hispanic, and 73% had a history of hypertension. Among patients with available data, AKI developed in 31 of 33 patients (94%), including 6 with AKI stage 1, 9 with stage 2, and 16 with stage 3. The predominant finding correlating with AKI was acute tubular injury. However, the degree of acute tubular injury was often less severe than predicted for the degree of AKI, suggesting a role for hemodynamic factors, such as aggressive fluid management. Background changes of hypertensive arterionephrosclerosis and diabetic glomerulosclerosis were frequent but typically mild. We identified focal kidney fibrin thrombi in 6 of 42 (14%) autopsies. A single Black patient had collapsing FSGS. Immunofluorescence and electron microscopy were largely unrevealing, and in situ hybridization for SARS-CoV-2 showed no definitive positivity.ConclusionsAmong a cohort of 42 patients dying with COVID-19, autopsy histologic evaluation revealed acute tubular injury, which was typically mild relative to the degree of creatinine elevation. These findings suggest potential for reversibility upon resolution of SARS-CoV-2 infection.
Project description:COVID-19 has been associated with acute kidney injury and published reports of native kidney biopsies have reported diverse pathologies. Case series directed specifically to kidney allograft biopsy findings in the setting of COVID-19 are lacking. We evaluated 18 kidney transplant recipients who were infected with SARS-CoV-2 and underwent allograft biopsy. Patients had a median age of 55 years, six were female, and five were Black. Fifteen patients developed COVID-19 pneumonia, of which five required mechanical ventilation. Notably, five of 11 (45%) biopsies obtained within 1 month of positive SARS-CoV-2 PCR showed acute rejection (four with arteritis, three of which were not associated with reduced immunosuppression). The remaining six biopsies revealed podocytopathy (n = 2, collapsing glomerulopathy and lupus podocytopathy), acute tubular injury (n = 2), infarction (n = 1), and transplant glomerulopathy (n = 1). Biopsies performed >1 month after positive SARS-CoV-2 PCR revealed collapsing glomerulopathy (n = 1), acute tubular injury (n = 1), and nonspecific histologic findings (n = 5). No direct viral infection of the kidney allograft was detected by immunohistochemistry, in situ hybridization, or electron microscopy. On follow-up, two patients died and most patients showed persistent allograft dysfunction. In conclusion, we demonstrate diverse causes of kidney allograft dysfunction after COVID-19, the most common being acute rejection with arteritis.
Project description:BackgroundCoronavirus disease 2019 (COVID-19) is thought to cause kidney injury by a variety of mechanisms. To date, pathologic analyses have been limited to patient reports and autopsy series.MethodsWe evaluated biopsy samples of native and allograft kidneys from patients with COVID-19 at a single center in New York City between March and June of 2020. We also used immunohistochemistry, in situ hybridization, and electron microscopy to examine this tissue for presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).ResultsThe study group included 17 patients with COVID-19 (12 men, 12 black; median age of 54 years). Sixteen patients had comorbidities, including hypertension, obesity, diabetes, malignancy, or a kidney or heart allograft. Nine patients developed COVID-19 pneumonia. Fifteen patients (88%) presented with AKI; nine had nephrotic-range proteinuria. Among 14 patients with a native kidney biopsy, 5 were diagnosed with collapsing glomerulopathy, 1 was diagnosed with minimal change disease, 2 were diagnosed with membranous glomerulopathy, 1 was diagnosed with crescentic transformation of lupus nephritis, 1 was diagnosed with anti-GBM nephritis, and 4 were diagnosed with isolated acute tubular injury. The three allograft specimens showed grade 2A acute T cell-mediated rejection, cortical infarction, or acute tubular injury. Genotyping of three patients with collapsing glomerulopathy and the patient with minimal change disease revealed that all four patients had APOL1 high-risk gene variants. We found no definitive evidence of SARS-CoV-2 in kidney cells. Biopsy diagnosis informed treatment and prognosis in all patients.ConclusionsPatients with COVID-19 develop a wide spectrum of glomerular and tubular diseases. Our findings provide evidence against direct viral infection of the kidneys as the major pathomechanism for COVID-19-related kidney injury and implicate cytokine-mediated effects and heightened adaptive immune responses.
Project description:BackgroundReports show that AKI is a common complication of severe coronavirus disease 2019 (COVID-19) in hospitalized patients. Studies have also observed proteinuria and microscopic hematuria in such patients. Although a recent autopsy series of patients who died with severe COVID-19 in China found acute tubular necrosis in the kidney, a few patient reports have also described collapsing glomerulopathy in COVID-19.MethodsWe evaluated biopsied kidney samples from ten patients at our institution who had COVID-19 and clinical features of AKI, including proteinuria with or without hematuria. We documented clinical features, pathologic findings, and outcomes.ResultsOur analysis included ten patients who underwent kidney biopsy (mean age: 65 years); five patients were black, three were Hispanic, and two were white. All patients had proteinuria. Eight patients had severe AKI, necessitating RRT. All biopsy samples showed varying degrees of acute tubular necrosis, and one patient had associated widespread myoglobin casts. In addition, two patients had findings of thrombotic microangiopathy, one had pauci-immune crescentic GN, and another had global as well as segmental glomerulosclerosis with features of healed collapsing glomerulopathy. Interestingly, although the patients had confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by RT-PCR, immunohistochemical staining of kidney biopsy samples for SARS-CoV-2 was negative in all ten patients. Also, ultrastructural examination by electron microscopy showed no evidence of viral particles in the biopsy samples.ConclusionsThe most common finding in our kidney biopsy samples from ten hospitalized patients with AKI and COVID-19 was acute tubular necrosis. There was no evidence of SARS-CoV-2 in the biopsied kidney tissue.
Project description:Background Few studies have evaluated whether histopathologic lesions on kidney biopsy provide prognostic information beyond clinical and laboratory data.Methods We enrolled 676 individuals undergoing native kidney biopsy at three tertiary care hospitals into a prospective, observational cohort study. Biopsy specimens were adjudicated for semiquantitative scores in 13 categories of histopathology by two experienced renal pathologists. Proportional hazards models tested the association between histopathologic lesions and risk of kidney disease progression (≥40% eGFR decline or RRT).Results Mean baseline eGFR was 57.5±36.0 ml/min per 1.73 m2 During follow-up (median, 34.3 months), 199 individuals suffered kidney disease progression. After adjustment for demographics, clinicopathologic diagnosis, and laboratory values, the following lesions (hazard ratio; 95% confidence interval) were independently associated with progression: inflammation in nonfibrosed interstitium (0.52; 0.32 to 0.83), moderate and severe versus minimal interstitial fibrosis/tubular atrophy (2.14; 1.24 to 3.69 and 3.42; 1.99 to 5.87, respectively), moderate and severe versus minimal global glomerulosclerosis (2.17; 1.36 to 3.45 and 3.31; 2.04 to 5.38, respectively), moderate and severe versus minimal arterial sclerosis (1.78; 1.15 to 2.74 and 1.64; 1.04 to 2.60, respectively), and moderate and severe versus minimal arteriolar sclerosis (1.63; 1.08 to 2.46 and 2.33; 1.42 to 3.83, respectively). An 11-point chronicity score derived from semiquantitative assessments of chronic lesions independently associated with higher risk of kidney disease progression (hazard ratio per one-point increase, 1.19; 95% confidence interval, 1.12 to 1.27).Conclusions Across a diverse group of kidney diseases, histopathologic lesions on kidney biopsy provide prognostic information, even after adjustment for proteinuria and eGFR.
Project description:BackgroundReis-Bücklers corneal dystrophy (RBCD) was consistently reported as a corneal dystrophy only affected Bowman's layer and superficial corneal stroma, and superficial keratectomy was a recommendation surgery for treatment in literatures. The study reported new histopathological and ultrastructural findings in RBCD caused by the Arg124Leu mutation of transforming growth factor induced (TGFBI) gene in a four-generation Chinese pedigree.MethodsSubjects including eight patients and seven unaffected family members received slit-lamp biomicroscopy and photography. DNA was obtained from all subjects, and exons 4 and 11 to 14 of TGFBI gene were analyzed by polymerase chain reaction and the products were sequenced. Anterior segment optical coherence tomography (AS OCT) and in vivo confocal microscopy were conducted for ten eyes of five patients. Based on the results of AS OCT and in vivo confocal microscopy, deep anterior lamellar keratoplasty (DLKP) using cryopreserved donor cornea was applied for four eyes of four patients. Four lamellar dystrophic corneal buttons were studied by light and transmission electron microscopy, and TGFBI immunohistochemistry.ResultsEight patients had typical clinical manifestations of RBCD presenting recurrent painful corneal erosion starting in their early first decades, along with age-dependent progressive geographic corneal opacities. TGFBI sequencing revealed a heterozygous mutation, Arg124Leu in all eight patients. Anterior segment optical coherence tomography and in vivo confocal microscopy showed the dystrophic deposits involved not only in subepithelial and superficial stroma, but also in mid- or posterior stroma in four examined advanced eyes. Light microscopy showed Bowman's layer was absent, replaced by abnormal deposits stain bright red with Masson's trichrome. In superficial cornea, the deposits stacked and produced three to five continuous bands parallel to the corneal collagen lamellae. In mid- to posterior stroma, numerous granular or dot- like aggregates were heavily scattered, and most of them presented around the nuclei of stromal keratocytes. Transmission electron microscopy revealed the multiple electron-dense rod-shaped deposits aggregated and formed a characteristic pattern of three to five continuous bands in superficial cornea, which were similar to those seen under light microscopy. In mid- to posterior stroma, clusters of rod-shaped bodies were scattered extracellular or intracellular of the stromal keratocytes between the stromal lamellae suggesting the close relationship between mutated proteins and keratocyte.ConclusionsThe study offer evidences indicating DLKP is a viable treatment option for advanced RBCD to avoid recurrence, and the mutated TGFBIp in dystrophic corneas are of keratocytes origin.
Project description:ObjectivePainful small-fiber neuropathies (SFNs) in primary Sjögren's syndrome (SS) may present as pure or mixed with concurrent large-fiber involvement. SFN can be diagnosed by punch skin biopsy results that identify decreased intra-epidermal nerve-fiber density (IENFD) of unmyelinated nerves.MethodsWe compared 23 consecutively evaluated patients with SS with pure and mixed SFN versus 98 patients without SFN. We distinguished between markers of dorsal root ganglia (DRG) degeneration (decreased IENFD in the proximal thigh versus the distal leg) versus axonal degeneration (decreased IENFD in the distal leg versus the proximal thigh).ResultsThere were no differences in pain intensity, pain quality, and treatment characteristics in the comparison of 13 patients with pure SFN versus 10 patients with mixed SFN. Ten patients with SFN (approximately 45%) had neuropathic pain preceding sicca symptoms. Opioid analgesics were prescribed to approximately 45% of patients with SFN. When compared to 98 patients without SFN, the 23 patients with SFN had an increased frequency of male sex (30% versus 9%; P < 0.01), a decreased frequency of anti-Ro 52 (P = 0.01) and anti-Ro 60 antibodies (P = 0.01), rheumatoid factor positivity (P < 0.01), and polyclonal gammopathy (P < 0.01). Eleven patients had stocking-and-glove pain, and 12 patients had nonstocking-and-glove pain. Skin biopsy results disclosed patterns of axonal (16 patients) and DRG injury (7 patients).ConclusionSS SFN had an increased frequency among male patients, a decreased frequency of multiple antibodies, frequent treatment with opioid analgesics, and the presence of nonstocking-and-glove pain. Distinguishing between DRG versus axonal injury is significant, especially given that mechanisms targeting the DRG may result in irreversible neuronal cell death. Altogether, these findings highlight clinical, autoantibody, and pathologic features that can help to define mechanisms and treatment strategies.
Project description:The onset of coronavirus disease (COVID-19) as a pandemic infection, has led to increasing insights on its pathophysiology and clinical features being revealed, such as a noticeable kidney involvement. In this study, we describe the histopathological, immunofluorescence, and ultrastructural features of biopsy-proven kidney injury observed in a series of SARS-CoV-2 positive cases in our institution from April 2020 to November 2021. We retrieved and retrospectively reviewed nine cases (two pediatric and seven adults) that experienced nephrotic syndrome (six cases), acute kidney injury (two cases), and a clinically silent microhematuria and leukocyturia. Kidney biopsies were investigated by means of light microscopy, direct immunofluorescence, and electron microscopy. The primary diagnoses were minimal change disease (four cases), acute tubular necrosis (two cases), collapsing glomerulopathy (two cases), and C3 glomerulopathy (one case). None of the cases showed viral or viral-like particles on ultrastructural analysis. Novel and specific histologic features on kidney biopsy related to SARS-CoV-2 infection have been gradually disclosed and reported, harboring relevant clinical and therapeutic implications. Recognizing and properly diagnosing renal involvement in patients experiencing COVID-19 could be challenging (due to the lack of direct proof of viral infection, e.g., viral particles) and requires a proper integration of clinical and pathological data.
Project description:Unfavourable procurement biopsy findings are the most common reason for deceased donor kidney discard in the United States. We sought to assess the association between biopsy findings and post-transplant outcomes when donor characteristics are accounted for. We used registry data to identify 1566 deceased donors of 3132 transplanted kidneys (2015-2020) with discordant right/left procurement biopsy classification and performed time-to-event analyses to determine the association between optimal histology and hazard of death-censored graft failure or death. We then repeated all analyses using a local cohort of 147 donors of kidney pairs with detailed procurement histology data available (2006-2016). Among transplanted kidney pairs in the national cohort, there were no significant differences in incidence of delayed graft function or primary nonfunction. Time to death-censored graft failure was not significantly different between recipients of optimal versus suboptimal kidneys. Results were similar in analyses using the local cohort. Regarding recipient survival, analysis of the national, but not local, cohort showed optimal kidneys were associated with a lower hazard of death (adjusted HR 0.68, 95% CI 0.52-0.90, P = 0.006). In conclusion, in a large national cohort of deceased donor kidney pairs with discordant right/left procurement biopsy findings, we found no association between histology and death-censored graft survival.
Project description:Evidence on the evolution of graft function in kidney transplant recipients recovering from coronavirus disease-2019 (COVID-19) is lacking. This multicenter observational study evaluated the short-term clinical outcomes in recipients with acute kidney injury (AKI) secondary to COVID-19. Out of 452 recipients following up at five centers, 50 had AKI secondary to COVID-19. 42 recipients with at least 3-month follow-up were included. Median follow-up was 5.23 months [IQR 4.09-6.99]. Severe COVID-19 was seen in 21 (50%), and 12 (28.6%) had KDIGO stage 3 AKI. Complete recovery of graft function at 3 months was seen in 17 (40.5%) patients. Worsening of proteinuria was seen in 15 (37.5%) patients, and 4 (9.5%) patients had new onset proteinuria. Graft failure was seen in 6 (14.3%) patients. Kidney biopsy revealed acute tubular injury (9/11 patients), thrombotic microangiopathy (2/11), acute cellular rejection (2/11), and chronic active antibody-mediated rejection (3/11). Patients with incomplete recovery were likely to have lower eGFR and proteinuria at baseline, historical allograft rejection, higher admission SOFA score, orthostatic hypotension, and KDIGO stage 3 AKI. Baseline proteinuria and the presence of orthostatic hypotension independently predicted incomplete graft recovery. This shows that graft recovery may remain incomplete after AKI secondary to COVID-19.