Project description:During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Project description:The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recently emerged human coronavirus. COVID-19 vaccines have proven to be successful in protecting the vaccinated from infection, reducing the severity of disease, and deterring the transmission of infection. However, COVID-19 vaccination faces many challenges, such as the decline in vaccine-induced immunity over time, and the decrease in potency against some SARS-CoV-2 variants including the recently emerged Omicron variant, resulting in breakthrough infections. The challenges that COVID-19 vaccination is facing highlight the importance of the discovery of antivirals to serve as another means to tackle the pandemic. To date, neutralizing antibodies that block viral entry by targeting the viral spike protein make up the largest class of antivirals that has received US FDA emergency use authorization (EUA) for COVID-19 treatment. In addition to the spike protein, other key targets for the discovery of direct-acting antivirals include viral enzymes that are essential for SARS-CoV-2 replication, such as RNA-dependent RNA polymerase and proteases, as judged by US FDA approval for remdesivir, and EUA for Paxlovid (nirmatrelvir + ritonavir) for treating COVID-19 infections. This review presents an overview of the current status and future direction of antiviral drug discovery for treating SARS-CoV-2 infections, covering important antiviral targets such as the viral spike protein, non-structural protein (nsp) 3 papain-like protease, nsp5 main protease, and the nsp12/nsp7/nsp8 RNA-dependent RNA polymerase complex.
Project description:Despite to outbreaks of highly pathogenic beta and alpha coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human coronavirus, the newly emerged 2019 coronavirus (COVID-19) is considered as a lethal zoonotic virus due to its deadly respiratory syndrome and high mortality rate among the human. Globally, more than 3,517,345 cases have been confirmed with 243,401 deaths due to Acute Respiratory Distress Syndrome (ARDS) caused by COVID-19. The antiviral drug discovery activity is required to control the persistence of COVID-19 circulation and the potential of the future emergence of coronavirus. However, the present review aims to highlight the important antiviral approaches, including interferons, ribavirin, mycophenolic acids, ritonavir, lopinavir, inhibitors, and monoclonal antibodies (mAbs) to provoke the nonstructural proteins and deactivate the structural and essential host elements of the virus to control and treat the infection of COVID-19 by inhibiting the viral entry, viral RNA replication and suppressing the viral protein expression. Moreover, the present review investigates the epidemiology, diagnosis, structure, and replication of COVID-19 for better understanding. It is recommended that these proteases, inhibitors, and antibodies could be a good therapeutic option in drug discovery to control the newly emerged coronavirus.HighlightsCOVID-19 has more than 79.5% identical sequence to SARS-CoV and a 96% identical sequence of the whole genome of bat coronaviruses.Acute respiratory distress syndrome (ARDS), renal failure, and septic shock are the possible clinical symptoms associated with COVID-19.Different antivirals, including interferons, ribavirin, lopinavir, and monoclonal antibodies (mAbs) could be the potent therapeutic agents against COVID-19.The initial clinical trials on hydroquinone in combination with azithromycin showed an admirable result in the reduction of COVID-19.The overexpression of inflammation response, cytokine dysregulation, and induction of apoptosis could be an well-organized factors to reduce the pathogenicity of COVID-19.
Project description:Even entering the third year of the COVID-19 pandemic, only a small number of COVID-19 antiviral drugs are approved. Curcumin has previously shown antiviral activity against SARS-CoV-2 nucleocapsid, but its poor bioavailability limits its clinical uses. Utilizing nanotechnology structures, curcumin-derived carbon-dots (cur-CDs) were synthesized to increase low bioavailability of curcumin. In-silico analyses were performed using molecular docking, inhibition of SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD) and antiviral activity were assessed in dimer-based screening system (DBSS) and in vitro respectively. Curcumin bound with the N-CTD at ΔG = -7.6 kcal/mol, however modifications into cur-CDs significantly improved the binding affinity and %interaction. Cur-CDs also significantly increased protection against SARS-CoV-2 in both DBSS and in vitro at MOI = 0.1. This study demonstrated the effect of post-infection treatment of curcumin and novel curcumin-derived carbon-dots on SARS-CoV-2 N-CTD dimerization. Further investigation on pre-infection and in-vivo treatment of curcumin and cur-CDs are required for a comprehensive understanding on the carbon-dots enhanced antiviral activity of curcumin against SARS-CoV-2.
Project description:There is urgent therapeutic need for COVID-19, a disease for which there are currently no widely effective approved treatments and the emergency use authorized drugs do not result in significant and widespread patient improvement. The food and drug administration-approved drug ivermectin has long been shown to be both antihelmintic agent and a potent inhibitor of viruses such as Yellow Fever Virus. In this study, we highlight the potential of ivermectin packaged in an orally administrable nanoparticle that could serve as a vehicle to deliver a more potent therapeutic antiviral dose and demonstrate its efficacy to decrease expression of viral spike protein and its receptor angiotensin-converting enzyme 2 (ACE2), both of which are keys to lowering disease transmission rates. We also report that the targeted nanoparticle delivered ivermectin is able to inhibit the nuclear transport activities mediated through proteins such as importin α/β1 heterodimer as a possible mechanism of action. This study sheds light on ivermectin-loaded, orally administrable, biodegradable nanoparticles to be a potential treatment option for the novel coronavirus through a multilevel inhibition. As both ACE2 targeting and the presence of spike protein are features shared among this class of virus, this platform technology has the potential to serve as a therapeutic tool not only for COVID-19 but for other coronavirus strains as well.
Project description:The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID-19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
Project description:IntroductionEfficient evaluation with an early surrogate endpoint, taking into account the process of disease evolution, may not only clarify inconsistent or underpowered results but also provide a new insight into the exploration of a new antiviral therapy for treating COVID-19 patients.MethodsWe assessed the dynamics of COVID-19 disease spectrum, commencing from low-risk (no or low oxygen supplement), medium-risk (non-invasive ventilator or high oxygen supplement), and high-risk (extracorporeal membrane oxygenation or invasive ventilator) risk state on enrollment, and then the subsequent progression and regression of risk states until discharge or death. The efficacy of antiviral therapy in altering the dynamics was assessed by using the high-risk state as a surrogate endpoint based on the data retrieved from the two-arm Adaptive Covid-19 Treatment Trial.ResultsUsing the high-risk state as a surrogate endpoint, remdesivir treatment led to a decrease in the high-risk COVID-19 state by 34.8% (95% CI 26.7-42.0%) for a 14-day period and 29.3% (95% CI 28.8-29.8%) up to 28 days, which were consistent with a statistically significant reduction of death by 30.5% (95% CI 6.6, 50.9%) up to a 28-day period. The estimates of numbers needed to be treated were 100.9 (95% CI 88.1, 115.7) for using the high-risk COVID-19 state as a surrogate endpoint for a 14-day period and 133.3 (95% CI 112.5, 158.0) were required for averting one death from COVID-19 up to 28 days.ConclusionsWe demonstrate the expedient use of the high-risk COVID-19 disease status as a surrogate endpoint for evaluating the primary outcome of the earliest death.