Project description:Background: The American Thoracic Society, U.S. Centers for Disease Control and Prevention, European Respiratory Society, and Infectious Diseases Society of America jointly sponsored this new practice guideline on the treatment of drug-resistant tuberculosis (DR-TB). The document includes recommendations on the treatment of multidrug-resistant TB (MDR-TB) as well as isoniazid-resistant but rifampin-susceptible TB.Methods: Published systematic reviews, meta-analyses, and a new individual patient data meta-analysis from 12,030 patients, in 50 studies, across 25 countries with confirmed pulmonary rifampin-resistant TB were used for this guideline. Meta-analytic approaches included propensity score matching to reduce confounding. Each recommendation was discussed by an expert committee, screened for conflicts of interest, according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology.Results: Twenty-one Population, Intervention, Comparator, and Outcomes questions were addressed, generating 25 GRADE-based recommendations. Certainty in the evidence was judged to be very low, because the data came from observational studies with significant loss to follow-up and imbalance in background regimens between comparator groups. Good practices in the management of MDR-TB are described. On the basis of the evidence review, a clinical strategy tool for building a treatment regimen for MDR-TB is also provided.Conclusions: New recommendations are made for the choice and number of drugs in a regimen, the duration of intensive and continuation phases, and the role of injectable drugs for MDR-TB. On the basis of these recommendations, an effective all-oral regimen for MDR-TB can be assembled. Recommendations are also provided on the role of surgery in treatment of MDR-TB and for treatment of contacts exposed to MDR-TB and treatment of isoniazid-resistant TB.
Project description:Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Project description:Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Project description:Nontuberculous mycobacteria (NTM) represent over 190 species and subspecies, some of which can produce disease in humans of all ages and can affect both pulmonary and extrapulmonary sites. This guideline focuses on pulmonary disease in adults (without cystic fibrosis or human immunodeficiency virus infection) caused by the most common NTM pathogens such as Mycobacterium avium complex, Mycobacterium kansasii, and Mycobacterium xenopi among the slowly growing NTM and Mycobacterium abscessus among the rapidly growing NTM. A panel of experts was carefully selected by leading international respiratory medicine and infectious diseases societies (ATS, ERS, ESCMID, IDSA) and included specialists in pulmonary medicine, infectious diseases and clinical microbiology, laboratory medicine, and patient advocacy. Systematic reviews were conducted around each of 22 PICO (Population, Intervention, Comparator, Outcome) questions and the recommendations were formulated, written, and graded using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. Thirty-one evidence-based recommendations about treatment of NTM pulmonary disease are provided. This guideline is intended for use by healthcare professionals who care for patients with NTM pulmonary disease, including specialists in infectious diseases and pulmonary diseases.
Project description:Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Project description:Interferon-Stimulated Gene 15 (ISG15) transcript is aberrantly expressed in most human malignancies, suggesting that it has a protumor function. However, at the protein level ISG15 has both protumor and immunomodulatory antitumor functions. Therapeutic strategies to maximize the latter may benefit cancer patients overexpressing the ISG15 pathway.
Project description:BackgroundAccurate diagnosis of idiopathic pulmonary fibrosis (IPF) is essential to inform prognosis and treatment. In 2018, the ATS/ERS/JRS/ALAT and Fleischner Society released new diagnostic guidelines for usual interstitial pneumonitis (UIP)/IPF, adding Probable UIP as a CT category based on prior studies demonstrating this category had relatively high positive predictive value (PPV) for histopathologic UIP/Probable UIP. This study applies the 2018 ATS/ERS/JRS/ALAT and Fleischner Society guidelines to determine test characteristics of CT categories in academic clinical practice.MethodsCT and histopathology were evaluated by three thoracic radiologists and two thoracic pathologists. Comparison of consensus categorization by the 2018 ATS and Fleischner Society guidelines by CT and histopathology was performed.ResultsOf patients with CT UIP, 87% (PPV, 95% CI: 60-98%) had histopathologic UIP with 97% (CI: 90-100%) specificity. Of patients with CT Probable UIP, 38% (PPV, CI: 14-68%) had histopathologic UIP and 46% (PPV, CI: 19-75%) had either histopathologic UIP or Probable UIP, with 88% (CI: 77-95%) specificity. Patients with CT Indeterminate and Alternative Diagnosis had histopathologic UIP in 27% (PPV, CI: 6-61%) and 21% (PPV, CI: 11-33%) of cases with specificities of 90% (CI: 80-96%) and 25% (CI: 16-37%). Interobserver variability (kappa) between radiologists ranged 0.32-0.81.ConclusionsCT UIP and Probable UIP have high specificity for histopathologic UIP, and CT UIP has high PPV for histopathologic UIP. PPV of CT Probable UIP was 46% for combined histopathologic UIP/Probable UIP. Our results indicate that additional studies are needed to further assess and refine the guideline criteria to improve classification performance.
Project description:BackgroundThe current classification of human lung adenocarcinoma defines five different histological growth patterns within the group of conventional invasive adenocarcinomas. The five growth patterns are characterised by their typical architecture, but also by variable tumor biological behaviour.AimsThe aim of this study was to identify specific gene signatures of the five adenocarcinoma growth patterns defined by the joint IASLC/ATS/ERS working group.MethodsTotal RNA from microdissected adenocarcinoma tissue samples of ten lepidic, ten acinar, ten solid, nine papillary, and nine micropapillary tumor portions was isolated and prepared for gene expression analysis. Differential expression of genes was determined using the R package "LIMMA". The overall significance of each signature was assessed via global test. Gene ontology statistics were analysed using GOstat. For immunohistochemical validation, tissue specimens from 20 tumors with solid and 20 tumors with lepidic growth pattern were used.ResultsMicroarray analyses between the growth patterns resulted in numerous differentially expressed genes between the solid architecture and other patterns. The comparison of transcriptomic activity in the solid and lepidic patterns revealed 705 up- and 110 downregulated non-redundant genes. The pattern-specific protein expression of Inositol-1,4,5-trisphosphate-kinase-A (ITPKA) and angiogenin by immunohistochemistry confirmed the RNA levels. The strongest differences in protein expression between the two patterns were shown for ITPKA (p = 0.02) and angiogenin (p = 0.113).ConclusionsIn this study growth pattern-specific gene signatures in pulmonary adenocarcinoma were identified and distinct transcriptomic differences between lung adenocarcinoma growth patterns were defined. The study provides valuable new information about pulmonary adenocarcinoma and allows a better assessment of the five adenocarcinoma subgroups.
Project description:Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.