Unknown

Dataset Information

0

Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease.


ABSTRACT: Parkinson's disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential therapeutics. In this study, we investigated the neuroprotective effects of cryptotanshinone (CTN), which has been reported to have antioxidant properties, through PD patient-derived hiNPCs (PD-iNPCs) model with induced oxidative stress and cell death by the proteasome inhibitor MG132. A cytotoxicity assay showed that CTN possesses anti-apoptotic properties in PD-hiNPCs. CTN treatment significantly reduced cellular apoptosis through mitochondrial restoration, such as the reduction in mitochondrial reactive oxygen species and increments of mitochondrial membrane potential. These effects of CTN are mediated via the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in PD-hiNPCs. Consequently, CTN could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.

SUBMITTER: Lee JE 

PROVIDER: S-EPMC7463464 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease.

Lee Joo-Eun JE   Sim Hyuna H   Yoo Hee Min HM   Lee Minhyung M   Baek Aruem A   Jeon Young-Joo YJ   Seo Kang-Sik KS   Son Mi-Young MY   Yoon Joo Seog JS   Kim Janghwan J  

Molecules (Basel, Switzerland) 20200807 16


Parkinson's disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential therapeutics. In this study, we investigated the neuroprotective effects of cryptotanshinone (CTN), which has been reported to have antioxidant properties, through PD patient-derived hiNPCs (PD-iNPCs) model with  ...[more]

Similar Datasets

| S-EPMC7714585 | biostudies-literature
| S-EPMC7520294 | biostudies-literature
| S-EPMC6838134 | biostudies-literature
| S-EPMC6262320 | biostudies-literature
| S-EPMC6856016 | biostudies-literature
| S-EPMC3079264 | biostudies-literature
| S-EPMC8694049 | biostudies-literature
| S-EPMC7557534 | biostudies-literature
| S-EPMC2206604 | biostudies-literature
| S-EPMC8116202 | biostudies-literature