Unknown

Dataset Information

0

IPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient In Vitro Cell Migration Stimulation.


ABSTRACT: The most challenging aspect of secondary progressive multiple sclerosis (SPMS) is the lack of efficient regenerative response for remyelination, which is carried out by the endogenous population of adult oligoprogenitor cells (OPCs) after proper activation. OPCs must proliferate and migrate to the lesion and then differentiate into mature oligodendrocytes. To investigate the OPC cellular component in SPMS, we developed induced pluripotent stem cells (iPSCs) from SPMS-affected donors and age-matched controls (CT). We confirmed their efficient and similar OPC differentiation capacity, although we reported SPMS-OPCs were transcriptionally distinguishable from their CT counterparts. Analysis of OPC-generated conditioned media (CM) also evinced differences in protein secretion. We further confirmed SPMS-OPC CM presented a deficient capacity to stimulate OPC in vitro migration that can be compensated by exogenous addition of specific components. Our results provide an SPMS-OPC cellular model and encouraging venues to study potential cell communication deficiencies in the progressive form of multiple sclerosis (MS) for future treatment strategies.

SUBMITTER: Lopez-Caraballo L 

PROVIDER: S-EPMC7463559 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

iPS-Derived Early Oligodendrocyte Progenitor Cells from SPMS Patients Reveal Deficient In Vitro Cell Migration Stimulation.

Lopez-Caraballo Lidia L   Martorell-Marugan Jordi J   Carmona-Sáez Pedro P   Gonzalez-Munoz Elena E  

Cells 20200729 8


The most challenging aspect of secondary progressive multiple sclerosis (SPMS) is the lack of efficient regenerative response for remyelination, which is carried out by the endogenous population of adult oligoprogenitor cells (OPCs) after proper activation. OPCs must proliferate and migrate to the lesion and then differentiate into mature oligodendrocytes. To investigate the OPC cellular component in SPMS, we developed induced pluripotent stem cells (iPSCs) from SPMS-affected donors and age-matc  ...[more]

Similar Datasets

2020-07-30 | GSE151306 | GEO
| PRJNA635419 | ENA
| S-EPMC4383518 | biostudies-literature
2021-11-23 | GSE173245 | GEO
| S-EPMC8473979 | biostudies-literature
| S-EPMC4529846 | biostudies-other
| S-EPMC3695361 | biostudies-literature
| S-EPMC3562326 | biostudies-literature
| S-EPMC3723819 | biostudies-literature
| S-EPMC9483613 | biostudies-literature