Unknown

Dataset Information

0

Proteomic Signatures of Corals from Thermodynamic Reefs.


ABSTRACT: Unlike most parts of the world, coral reefs of Taiwan's deep south have generally been spared from climate change-induced degradation. This has been linked to the oceanographically unique nature of Nanwan Bay, where intense upwelling occurs. Specifically, large-amplitude internal waves cause shifts in temperature of 6-9 °C over the course of several hours, and the resident corals not only thrive under such conditions, but they have also been shown to withstand multi-month laboratory incubations at experimentally elevated temperatures. To gain insight into the sub-cellular basis of acclimation to upwelling, proteins isolated from reef corals (Seriatopora hystrix) featured in laboratory-based reciprocal transplant studies in which corals from upwelling and non-upwelling control reefs (<20 km away) were exposed to stable or variable temperature regimes were analyzed via label-based proteomics (iTRAQ). Corals exposed to their "native" temperature conditions for seven days (1) demonstrated highest growth rates and (2) were most distinct from one another with respect to their protein signatures. The latter observation was driven by the fact that two Symbiodiniaceae lipid trafficking proteins, sec1a and sec34, were marginally up-regulated in corals exposed to their native temperature conditions. Alongside the marked degree of proteomic "site fidelity" documented, this dataset sheds light on the molecular mechanisms underlying acclimatization to thermodynamically extreme conditions in situ.

SUBMITTER: Mayfield AB 

PROVIDER: S-EPMC7465421 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteomic Signatures of Corals from Thermodynamic Reefs.

Mayfield Anderson B AB  

Microorganisms 20200801 8


Unlike most parts of the world, coral reefs of Taiwan's deep south have generally been spared from climate change-induced degradation. This has been linked to the oceanographically unique nature of Nanwan Bay, where intense upwelling occurs. Specifically, large-amplitude internal waves cause shifts in temperature of 6-9 °C over the course of several hours, and the resident corals not only thrive under such conditions, but they have also been shown to withstand multi-month laboratory incubations  ...[more]

Similar Datasets

2020-07-31 | MSV000085863 | MassIVE
| S-EPMC2799675 | biostudies-literature
| S-EPMC9772186 | biostudies-literature
| S-EPMC4419544 | biostudies-literature
| S-EPMC5656657 | biostudies-literature
| S-EPMC6661340 | biostudies-literature
| S-EPMC5144081 | biostudies-other
| S-EPMC5104371 | biostudies-literature
| S-EPMC3884659 | biostudies-literature
| S-EPMC5460201 | biostudies-literature