Unknown

Dataset Information

0

Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats.


ABSTRACT: Retinitis pigmentosa (RP) includes a group of genetic disorders that involve the loss of visual function due to mutations mainly in photoreceptors but also in other retinal cells. Apoptosis, retinal disorganization, and inflammation are common in the progression of the disease. Epigallocatechin gallate (EGCG) has been proved as beneficial in different eye diseases. Pigmented heterozygous P23H rat was used as an animal model of RP. Visual function was assessed by optomotor and electroretinogram (ERG) and circadian rhythms were evaluated by telemetry. Hepatic oxidative damage and antioxidant defenses were assessed using biochemical tests. The visual function of the EGCG P23H group was preserved, with a deterioration in the activity period and lower values in the interdaily stability parameter. Control rats treated with EGCG were less active than the sham group. EGCG increased antioxidant levels in P23H rats but reduced total hepatic antioxidant capacity by almost 42% in control rats compared to the sham group. We conclude that treatment with EGCG improves visual function and antioxidant status in P23H rats but diminishes antioxidant defenses in wild-type control animals, and slightly worsens activity circadian rhythms. Further studies are necessary to clarify the beneficial effects in disease conditions and in healthy organisms.

SUBMITTER: Perdices L 

PROVIDER: S-EPMC7465727 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats.

Perdices Lorena L   Fuentes-Broto Lorena L   Segura Francisco F   Cuenca Nicolás N   Orduna-Hospital Elvira E   Pinilla Isabel I  

Antioxidants (Basel, Switzerland) 20200808 8


Retinitis pigmentosa (RP) includes a group of genetic disorders that involve the loss of visual function due to mutations mainly in photoreceptors but also in other retinal cells. Apoptosis, retinal disorganization, and inflammation are common in the progression of the disease. Epigallocatechin gallate (EGCG) has been proved as beneficial in different eye diseases. Pigmented heterozygous P23H rat was used as an animal model of RP. Visual function was assessed by optomotor and electroretinogram (  ...[more]

Similar Datasets

| S-EPMC3416780 | biostudies-literature
| S-EPMC5943924 | biostudies-literature
| S-EPMC4383035 | biostudies-literature
2024-07-17 | GSE208144 | GEO
| S-EPMC4847629 | biostudies-literature
| S-EPMC7571290 | biostudies-literature
| 2132582 | ecrin-mdr-crc
| PRJNA858466 | ENA
| S-EPMC5592236 | biostudies-other
| S-EPMC9281868 | biostudies-literature