IL15 synergizes with radiotherapy to reprogram the tumor immune contexture through a dendritic cell connection.
Ontology highlight
ABSTRACT: IL15 is a key cytokine for the activation and survival of anti-tumor effectors CD8+ T and NK cells. Recently published preclinical studies demonstrate that the therapeutic activity of IL15 requires conventional dendritic cells type 1 (cDC1). Radiotherapy cooperates with IL15 by enhancing cDC1 tumor infiltration via interferon type 1 activation.
Project description:Focal radiotherapy can promote cross-presentation of tumor antigens to T cells, but by itself, it is insufficient to induce therapeutically effective T-cell responses. The common gamma-chain cytokine IL15 promotes and sustains the proliferation and effector function of CD8+ T cells but has limited activity against poorly immunogenic tumors that do not elicit significant spontaneous T-cell responses. Here, we show that radiotherapy and subcutaneous IL15 had complementary effects and induced CD8+ T-cell-mediated tumor regression and long-term protective memory responses in two mouse carcinoma models unresponsive to IL15 alone. Mechanistically, radiotherapy-induced IFN type I production and Batf3-dependent conventional dendritic cells type 1 (cDC1) were required for priming of tumor-specific CD8+ T cells and for the therapeutic effect of the combination. IL15 cooperated with radiotherapy to activate and recruit cDC1s to the tumor. IL15 alone and in complex with a hybrid molecule containing the IL15α receptor have been tested in early-phase clinical trials in patients with cancer and demonstrated good tolerability, especially when given subcutaneously. Expansion of natural killer (NK) cells and CD8+ T cells was noted, without clear clinical activity, suggesting further testing of IL15 as a component of a combinatorial treatment with other agents. Our results provide the rationale for testing combinations of IL15 with radiotherapy in the clinic.
Project description:Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have been demonstrated to be a promising immunotherapy for solid tumors. We focused on sole injection of tumor cells that were inactivated by HHP and their combination with local radiotherapy (RTx) for in vivo induction of anti-tumor immune responses. HHP-treatment of tumor cells resulted in pre-dominantly necrotic cells with degraded DNA. We confirmed that treatments at 200 MPa or higher completely inhibited the formation of tumor cell colonies in vitro. No tumor growth was seen in vivo after injection of HHP-treated tumor cells. Single vaccination with HHP-killed tumor cells combined with local RTx significantly retarded tumor growth and improved the survival as shown in B16-F10 and CT26 tumor models. In B16-F10 tumors that were irradiated with 2 × 5Gy and vaccinated once with HHP-killed tumor cells, the amount of natural killer (NK) cells, monocytes/macrophages, CD4+ T cells and NKT cells was significantly increased, while the amount of B cells was significantly decreased. In both models, a trend of increased CD8+ T cell infiltration was observed. Generally, in irradiated tumors high amounts of CD4+ and CD8+ T cells expressing PD-1 were found. We conclude that HHP generates inactivated tumor cells that can be used as a tumor vaccine. Moreover, we show for the first time that tumor cell-based vaccine acts synergistically with RTx to significantly retard tumor growth by generating a favorable anti-tumor immune microenvironment.
Project description:Checkpoint blockade therapy has emerged as a novel approach for cancer immunotherapy in several malignancies. However, patient prognosis and disease progression relevant to immune checkpoints in gastric tumor microenvironment are not defined. This study aims to investigate the expression and prognostic significance of immune checkpoints within gastric cancer. In the study, a cohort of 398 cancer tissues from stage I to IV gastric cancer patients were assessed for programmed cell death 1 ligand 1 (PD-L1) expression and tumor-infiltrating lymphocyte (TIL) infiltration using immunohistochemistry to ascertain their survival correlation. The data revealed that higher TIL density correlated with less risk of disease progression, and exhibited survival benefits in gastric cancer patients, and PD-L1 positivity showed a significant association with the presence of high TIL infiltration. Furthermore, real-time quantitative polymerase chain reaction was performed to detect expression of multiple immune checkpoints with the relation to clinical outcome in 139 samples randomly selected from the same cohort, and higher messenger RNA levels of most immune checkpoints were associated with favorable outcome, while consistently showing a positive correlation with interferon gamma levels. In situ hybridization was used to determine the localization of Epstein-Barr virus (EBV) in 97 specimens, and showed EBV-positive gastric cancer samples correlated with PD-L1 expression and increased TIL density. These results suggest that induction of immune checkpoint within gastric cancer patients reflects a high immune infiltration density, especially in those with EBV-associated gastric cancer, which may direct patient selection for checkpoint blockade therapy.
Project description:The integrative analysis of tumor immune microenvironment (TiME) components, their interactions and their microanatomical distribution is mandatory to better understand tumor progression. Imaging Mass Cytometry (IMC) is a high dimensional tissue imaging system which allows the comprehensive and multiparametric in situ exploration of tumor microenvironments at a single cell level. We describe here the design of a 39-antibody IMC panel for the staining of formalin-fixed paraffin-embedded human tumor sections. We also provide an optimized staining procedure and details of the experimental workflow. This panel deciphers the nature of immune cells, their functions and their interactions with tumor cells and cancer-associated fibroblasts as well as with other TiME structural components known to be associated with tumor progression like nerve fibers and tumor extracellular matrix proteins. This panel represents a valuable innovative and powerful tool for fundamental and clinical studies that could be used for the identification of prognostic biomarkers and mechanisms of resistance to current immunotherapies.
Project description:Dendritic cells (DCs) can initiate both naïve and memory T cell activation, as the most potent antigen-presenting cells. For efficient anti-tumor immunity, it is essential to enhance the anti-tumoral activity of tumor-associated DCs (TADCs) or to potently restrain TADCs so that they remain immuno-stimulating cells. Combined phospholipids (cPLs) adjuvant may act through the activation of DCs. This study demonstrated the potential mechanism of tumor growth inhibition of cPLs adjuvant, and confirmed that cPLs adjuvant could induce the maturation and activation (upregulation of MHC-II, CD80, CD40, IL-1β, IL-12, IL-6 expression) of BMDCs in vitro. Then we isolated tumor infiltrating lymphocytes (TILs) from solid tumor and analyzed the phenotype and cytokines of TILs. The examination of the TILs revealed that cPLs adjuvant upregulated the expression of co-stimulatory molecules (MHC-II, CD86), phosphatidylserine (PS) receptor (TIM-4) on TADCs and enhanced the cytotoxic effect (CD107a), as well as pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-2) by the tumor-resident T cells. Taken together, cPLs adjuvant may be an immune-potentiating adjuvant for cancer immunotherapy. This reagent may lead to the development of new approaches in DC-targeted cancer immunotherapy.
Project description:DC vaccine-based immunotherapy is emerging as a novel therapeutic strategy for cancer treatment, however, antitumor effect of DC vaccines based on tumor cell lysates (TCLs) remains unsatisfactory due to poor immunogenicity of tumor antigens. Although tumor-associated exosomes (TAEs) have been reported as a promising antigen for DC vaccines, it remains unclear how TAE-based DC vaccine induced antitumor immunity in lung cancer. Methods: In the present study, we extracted TAEs from the supernatant of tumor cell culture medium, and compared the effect of TAEs with TCLs on DCs. To further evaluate the therapeutic effect of DCTAE, we used immunofluorescence and flow cytometry to evaluate the apoptosis of tumor tissue, tumor-infiltrating CD8+ T cells and Tregs in TDLNs and spleen. Then the levels of cytokines of IL-12, IFN-γ, L-10 and TGF-β were quantified by ELISA assays. Results: Our data showed that TAEs were more potent than TCLs to promote DC maturation and enhance MHC cross presentation, which directly contributed to more robust tumor-specific cytotoxic T lymphocyte (CTL) response. More importantly, TAEs reduced the expression of PD-L1 of DCs, thereby led to down-regulated population of Tregs in vitro. Moreover, DCTAE remarkably suppressed the tumor growth and prolonged survival rate in vivo, due to participance of CD8+ T cells and decreased Tregs in TDLNs and spleen. Conclusion: TAEs could serve to improve vaccine-elicited immunotherapy by triggering stronger DC-mediated immune responses and decreasing Tregs in the tumor microenvironment.
Project description:Background: Features characterizing the immune contexture (IC) in the tumor microenvironment can be prognostic and predictive biomarkers. Identifying novel biomarkers can be challenging due to complex interactions between immune and tumor cells and the abundance of possible features. Methods: We describe an approach for the data-driven identification of IC biomarkers. For this purpose, we provide mathematical definitions of different feature classes, based on cell densities, cell-to-cell distances, and spatial heterogeneity thereof. Candidate biomarkers are ranked according to their potential for the predictive stratification of patients. Results: We evaluated the approach on a dataset of colorectal cancer patients with variable amounts of microsatellite instability. The most promising features that can be explored as biomarkers were based on cell-to-cell distances and spatial heterogeneity. Both the tumor and non-tumor compartments yielded features that were potentially predictive for therapy response and point in direction of further exploration. Conclusion: The data-driven approach simplifies the identification of promising IC biomarker candidates. Researchers can take guidance from the described approach to accelerate their biomarker research.
Project description:The success of clinically relevant immunotherapies requires reversing tumor-induced immunosuppression. Here we demonstrated that linear polyethylenimine-based (PEI-based) nanoparticles encapsulating siRNA were preferentially and avidly engulfed by regulatory DCs expressing CD11c and programmed cell death 1-ligand 1 (PD-L1) at ovarian cancer locations in mice. PEI-siRNA uptake transformed these DCs from immunosuppressive cells to efficient antigen-presenting cells that activated tumor-reactive lymphocytes and exerted direct tumoricidal activity, both in vivo and in situ. PEI triggered robust and selective TLR5 activation in vitro and elicited the production of hallmark TLR5-inducible cytokines in WT mice, but not in Tlr5-/- littermates. Thus, PEI is a TLR5 agonist that, to our knowledge, was not previously recognized. In addition, PEI-complexed nontargeting siRNA oligonucleotides stimulated TLR3 and TLR7. The nonspecific activation of multiple TLRs (specifically, TLR5 and TLR7) reversed the tolerogenic phenotype of human and mouse ovarian tumor-associated DCs. In ovarian carcinoma-bearing mice, this induced T cell-mediated tumor regression and prolonged survival in a manner dependent upon myeloid differentiation primary response gene 88 (MyD88; i.e., independent of TLR3). Furthermore, gene-specific siRNA-PEI nanocomplexes that silenced immunosuppressive molecules on mouse tumor-associated DCs elicited discernibly superior antitumor immunity and enhanced therapeutic effects compared with nontargeting siRNA-PEI nanocomplexes. Our results demonstrate that the intrinsic TLR5 and TLR7 stimulation of siRNA-PEI nanoparticles synergizes with the gene-specific silencing activity of siRNA to transform tumor-infiltrating regulatory DCs into DCs capable of promoting therapeutic antitumor immunity.
Project description:Podoplanin (PDPN) has been proved to have significant immunoregulatory effects in several types of malignancies and is considered to be a novel immune checkpoint molecule. However, the clinical significance of PDPN and its potential influence on immune contexture in gastric cancer remain obscure. Here, we aimed to investigate the clinical outcomes and immunoregulatory role of tumor-infiltrating PDPN+ cells (tPDPNs) in gastric cancer. A total of 454 tumor tissue microarray specimens and 68 fresh tumor tissues of gastric cancer patients from Zhongshan Hospital, and transcriptional data of 293 gastric cancer patients from The Cancer Genome Atlas were included. We demonstrated that tPDPNs high subgroup experienced worse overall survival and disease-free survival, and indicated inferior therapeutic responsiveness to fluorouracil-based adjuvant chemotherapy (ACT) in gastric cancer. The abundance of tPDPNs was correlated with an immunoevasive contexture characterized by pro-tumor macrophage and dysfunctional CD8+ T cell infiltration. Moreover, dysfunctional CD8+ T cells in tPDPNs high subgroup exhibited decreased interferon-γ, granzyme B and perforin-1 expression yet elevated programmed cell death-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. Stratification of gastric cancer patients into different risk groups based on tPDPNs and CD8+ T cells showed distinct prognosis, responsiveness to ACT and molecular characteristics. This study revealed that the abundance of tPDPNs could identify an immunoevasive contexture and might be applied as an independent predictor for poor prognosis and suboptimal ACT responsiveness. Thus, we recommended tPDPNs as a promising therapeutic target in gastric cancer.
Project description:We introduce quanTIseq, a method to quantify the fractions of ten immune cell types from bulk RNA-sequencing data. quanTIseq was extensively validated in blood and tumor samples using simulated, flow cytometry, and immunohistochemistry data.quanTIseq analysis of 8000 tumor samples revealed that cytotoxic T cell infiltration is more strongly associated with the activation of the CXCR3/CXCL9 axis than with mutational load and that deconvolution-based cell scores have prognostic value in several solid cancers. Finally, we used quanTIseq to show how kinase inhibitors modulate the immune contexture and to reveal immune-cell types that underlie differential patients' responses to checkpoint blockers.Availability: quanTIseq is available at http://icbi.at/quantiseq .