Ultraviolet light activates PMK-1/p38 MAPK signaling via MOM-4 and JKK-1 in Caenorhabditis elegans.
Ontology highlight
ABSTRACT: P38 mitogen-activated protein kinase (p38 MAPK) plays an important role in innate immunity and is activated by ultraviolet (UV) radiation. However, the molecular mechanism underlying UV stress remains unclear. In this study, we reported that UV activated PMK-1/p38 MAPK signaling via JKK-1 and MOM-4 in Caenorhabditis elegans. In C. elegans, different UV radiation doses resulted in PMK-1 phosphorylation. However, pmk-1 mutants failed to demonstrate an altered survival time in response to UV when compared with wild-type worms. Further analysis showed that JKK-1, but not SEK-1 mutants, displayed impaired PMK-1 activation following UV irradiation, suggesting that JKK-1 is the upstream MAP2K for the activation of PMK-1 in C. elegans under UV stimulation. UV-induced activation of PMK-1 was markedly reduced in MOM-4, but not in NSY-1 and DLK-1 mutant worms, suggesting that MOM-4 is the upstream MAP3K regulator of PMK-1 activation in response to UV stress in C. elegans. Additionally, daf-16 mutants displayed a shorter lifespan under UV stress, but UV-induced activation of PMK-1 was not markedly reduced in daf-16 and age-1 mutant worms. Our results revealed the signaling pathway involved in PMK-1 activation in C. elegans in response to UV radiation.
Project description:The p38 mitogen-activated protein kinase (MAPK) plays an evolutionarily conserved role in the cellular response to microbial infection and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. In the Caenorhabditis elegans, the p38 MAPK (also called PMK-1) signaling pathway has been shown to be required in its resistance to bacterial infection. However, how different upstream MAP2Ks and MAP3Ks specifically contribute to the activation of PMK-1 in response to bacterial infection still is not clearly understood. By using double-stranded RNA-mediated interference (RNAi) and genetic mutants of C. elegans, we demonstrate that C. elegans MOM-4, a mammalian TAK1 homolog, is required for the resistance of C. elegans to a P. aeruginosa infection. We have also found that the MKK-4 of C. elegans is required for P. aeruginosa resistance, but not through the regulation of DLK-1. In summary, our results indicate that different upstream MAPKKKs or MAPKKs regulate the activation of PMK-1 in response to P. Aeruginosa.
Project description:Innate immunity in Caenorhabditis elegans requires a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway that regulates the basal and pathogen-induced expression of immune effectors. The mechanisms by which PMK-1 p38 MAPK regulates the transcriptional activation of the C. elegans immune response have not been identified. Furthermore, in mammalian systems the genetic analysis of physiological targets of p38 MAPK in immunity has been limited. Here, we show that C. elegans ATF-7, a member of the conserved cyclic AMP-responsive element binding (CREB)/activating transcription factor (ATF) family of basic-region leucine zipper (bZIP) transcription factors and an ortholog of mammalian ATF2/ATF7, has a pivotal role in the regulation of PMK-1-mediated innate immunity. Genetic analysis of loss-of-function alleles and a gain-of-function allele of atf-7, combined with expression analysis of PMK-1-regulated genes and biochemical characterization of the interaction between ATF-7 and PMK-1, suggest that ATF-7 functions as a repressor of PMK-1-regulated genes that undergoes a switch to an activator upon phosphorylation by PMK-1. Whereas loss-of-function mutations in atf-7 can restore basal expression of PMK-1-regulated genes observed in the pmk-1 null mutant, the induction of PMK-1-regulated genes by pathogenic Pseudomonas aeruginosa PA14 is abrogated. The switching modes of ATF-7 activity, from repressor to activator in response to activated PMK-1 p38 MAPK, are reminiscent of the mechanism of regulation mediated by the corresponding ancestral Sko1p and Hog1p proteins in the yeast response to osmotic stress. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans, and suggest that ATF2/ATF7 may function in a similar manner in the regulation of mammalian innate immunity.
Project description:Yersinia pestis has acquired a variety of complex strategies that enable the bacterium to overcome defenses in different hosts and ensure its survival and successful transmission. A full-genome microarray analysis on Caenorhabditis elegans infected with Y. pestis shows enrichment in genes that are markers of innate immune responses and regulated by a conserved PMK-1/p38 MAPK. Consistent with a role in regulating expression of immune effectors, inhibition of PMK-1/p38 by mutation or RNA interference enhances susceptibility to Y. pestis. Further studies of mosaic animals where PMK-1/p38 is exclusively inhibited or overexpressed in a tissue-specific manner indicate that PMK-1/p38 controls expression of a CUB-like family of immune genes at the cell-autonomous level. Given the conserved nature of PMK-1/p38 MAPK-mediated signaling and innate immune responses, PMK-1/p38 MAPK may play a role in the immune response against Y. pestis in natural hosts.
Project description:The decline in immune function with aging, known as immunosenescence, has been implicated in evolutionarily diverse species, but the underlying molecular mechanisms are not understood. During aging in Caenorhabditis elegans, intestinal tissue deterioration and the increased intestinal proliferation of bacteria are observed, but how innate immunity changes during C. elegans aging has not been defined. Here we show that C. elegans exhibits increased susceptibility to bacterial infection with age, and we establish that aging is associated with a decline in the activity of the conserved PMK-1 p38 mitogen-activated protein kinase pathway, which regulates innate immunity in C. elegans. Our data define the phenomenon of innate immunosenescence in C. elegans in terms of the age-dependent dynamics of the PMK-1 innate immune signaling pathway, and they suggest that a cycle of intestinal tissue aging, immunosenescence, and bacterial proliferation leads to death in aging C. elegans.
Project description:p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is activated in response to a variety of cellular stresses and ligands. Since the genome of the nematode C. elegans has been sequenced, we sought to identify and characterize the nematode homolog of mammalian p38. By sequence analysis and RT-PCR, we isolated cDNAs encoding three kinases, PMK-1, PMK-2, and PMK-3, which we call p38 map kinases due to their high sequence identity with p38. The three genes are contiguous on chromosome IV and comprise an operon. By use of a GFP reporter, we found that the promoter of the pmks is active throughout the intestine. An active form of MAPK/ERK kinase 6 (MEK6) phosphorylated and activated recombinant PMK-1 and PMK-2 in vitro. PMK-1 and PMK-2 phosphorylated activating transcription factor-2 (ATF-2), indicating an activity similar to mammalian p38. When transfected into mammalian cells, these kinases, like p38, are stimulated by osmotic stresses.
Project description:The p38 mitogen-activated protein kinase PMK-1 of Caenorhabditis elegans has been associated with heavy metal, oxidative and pathogen stress. Pmk-1 is part of an operon comprising three p38 homologues, with pmk-1 expression suggested to be regulated by the operon promoter. There are contradictory reports about the cellular localization of PMK-1. We were interested to study principles of pmk-1 expression and to analyze the role of PMK-1 under heat stress. Using a translational GFP reporter, we found pmk-1 expression to be driven by a promoter in front of pmk-1. PMK-1 was detected in intestinal cells and neurons, with a cytoplasmic localization at moderate temperature. Increasing temperature above 32 °C, however, induced a nuclear translocation of PMK-1 as well as PMK-1 accumulation near to apical membranes. Testing survival rates revealed 34-35 °C as critical temperature range, where short-term survival severely decreased. Mutants of the PMK-1 pathway (pmk-1Δ, sek-1Δ, mek-1Δ) as well as a mutant of JNK pathway (jnk-1Δ) showed significantly lower survival rates than wild-type or mutants of other pathways (kgb-1Δ, daf-2Δ). Rescue and overexpression experiments verified the negative effects of pmk-1Δ on heat tolerance. Studying gene expression by RNA-seq and semi-quantitative reverse transcriptase polymerase chain reaction revealed positive effects of the PMK-1 pathway on the expression of genes for chaperones, protein biosynthesis, protein degradation, and other functional categories. Thus, the PMK-1 pathway is involved in the heat stress responses of C. elegans, possibly by a PMK-1-mediated activation of the transcription factor SKN-1 and/or an indirect or direct PMK-1-dependent activation (hyperphosphorylation) of heat-shock factor 1.
Project description:The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Project description:The host-microbiota cross-talk represents an important factor contributing to innate immune response and host resistance during infection. It has been shown that probiotic lactobacilli exhibit the ability to modulate innate immunity and enhance pathogen elimination. Here we showed that heat-inactivated probiotic strain Lactobacillus curvatus BGMK2-41 stimulates immune response and resistance of the Caenorhabditis elegans against Staphylococcus aureus and Pseudomonas aeruginosa. By employing qRT-PCR and western blot analysis we showed that heat-inactivated BGMK2-41 activated PMK-1/p38 MAPK immunity pathway which prolongs the survival of C. elegans exposed to pathogenic bacteria in nematode killing assays. The C. elegans pmk-1 mutant was used to demonstrate a mechanistic basis for the antimicrobial potential of BGMK2-41, showing that BGMK2-41 upregulated PMK-1/p38 MAPK dependent transcription of C-type lectins, lysozymes and tight junction protein CLC-1. Overall, this study suggests that PMK-1/p38 MAPK-dependent immune regulation by BGMK2-41 is essential for probiotic-mediated C. elegans protection against gram-positive and gram-negative bacteria and could be further explored for development of probiotics with the potential to increase resistance of the host towards pathogens.
Project description:Analyses of gene expression profiles in evolutionarily diverse organisms have revealed a role for microRNAs in tuning tissue-specific gene expression. Here, we show that the relatively abundant and constitutively expressed miR-58 family of microRNAs sharply defines the tissue-specific expression of the broadly transcribed gene encoding PMK-2 p38 MAPK in Caenorhabditis elegans. Whereas PMK-2 functions redundantly with PMK-1 in the nervous system to regulate neuronal development and behavioral responses to pathogenic bacteria, the miR-58, miR-80, miR-81, and miR-82 microRNAs function redundantly to destabilize pmk-2 mRNA in non-neuronal cells with switch-like potency. Our data suggest a role for the miR-58 family in the establishment of neuronal-specific gene expression in C. elegans, and support a more general role for microRNAs in the establishment of tissue-specific gene expression.
Project description:PMK-1 is involved in the heat stress response of C. elegans, translocates to the nucleus upon heat exposure and influences the expression of chaperone genes, proteasomal subunits and protein-biosynthesis related genes. Differential Gene expression of WT and pmk-1 deletion mutant (KU25) after 5 hours at 35°C