Unknown

Dataset Information

0

High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5500 years.


ABSTRACT: Anomalously low winter sea ice extent and early retreat in CE 2018 and 2019 challenge previous notions that winter sea ice in the Bering Sea has been stable over the instrumental record, although long-term records remain limited. Here, we use a record of peat cellulose oxygen isotopes from St. Matthew Island along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5500-year record of Bering Sea winter sea ice extent. Results show that over the last 5500 years, sea ice in the Bering Sea decreased in response to increasing winter insolation and atmospheric CO2, suggesting that the North Pacific is highly sensitive to small changes in radiative forcing. We find that CE 2018 sea ice conditions were the lowest of the last 5500 years, and results suggest that sea ice loss may lag changes in CO2 concentrations by several decades.

SUBMITTER: Jones MC 

PROVIDER: S-EPMC7467686 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5500 years.

Jones Miriam C MC   Berkelhammer Max M   Keller Katherine J KJ   Yoshimura Kei K   Wooller Matthew J MJ  

Science advances 20200902 36


Anomalously low winter sea ice extent and early retreat in CE 2018 and 2019 challenge previous notions that winter sea ice in the Bering Sea has been stable over the instrumental record, although long-term records remain limited. Here, we use a record of peat cellulose oxygen isotopes from St. Matthew Island along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5500-year record of Bering Sea winter sea ice extent. Results show that over the last 5500 years, sea  ...[more]

Similar Datasets

| S-EPMC6971300 | biostudies-literature
| S-EPMC5951810 | biostudies-literature
| S-EPMC5838228 | biostudies-literature
| S-EPMC4167550 | biostudies-literature
| S-EPMC9269360 | biostudies-literature
| S-EPMC7756419 | biostudies-literature
| S-EPMC3870746 | biostudies-literature
| S-EPMC8616927 | biostudies-literature
| S-EPMC3306672 | biostudies-literature
| S-EPMC5046918 | biostudies-literature