AZD9291 inactivates the PRC2 complex to mediate tumor growth inhibition.
Ontology highlight
ABSTRACT: Deregulated Polycomb repressive complex 2 (PRC2) is intimately involved in tumorigenesis and progression, making it an invaluable target for epigenetic cancer therapy. Disrupting the EZH2-EED interaction, which is required for PRC2 enzymatic activity, is a promising strategy for cancer treatment. However, this kind of inhibitors are still limited. The in-cell protein-protein interaction screening was conducted for approximately 1300 compounds by NanoBRET technology. Co-immunoprecipitation (Co-IP), protein thermal shift assay (PTSA), and cellular thermal shift assay (CETSA) were performed to investigate the regulation of PRC2 by AZD9291. The anti-tumor effects of AZD9291 on breast cancer (BC) cells and diffuse large B-cell lymphoma (DLBCL) cells were detected. MicroRNA array assay, luciferase reporter assay, and qRT-PCR were conducted to identify the interaction and regulation among AZD9291, EZH2, and miR-34a. We discovered that, AZD9291, a potent and selective EGFR inhibitor, disrupted the interaction of EZH2-EED, leading to impairment of PRC2 activity and downregulation of EZH2 protein. In addition, AZD9291 declined EZH2 mRNA expression via upregulating the expression of a tumor suppressor, miR-34a. Our results suggest that AZD9291 can serve as a lead compound for further development of antagonist of PRC2 protein-protein interactions and EZH2 mRNA may be a direct target of miR-34a through non-canonical base pairing.
SUBMITTER: Zhang KL
PROVIDER: S-EPMC7468275 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA