Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin.
Ontology highlight
ABSTRACT: The vascular disrupting agent crolibulin binds to the colchicine binding site and produces anti-vascular and apoptotic effects. In a multisite phase 1 clinical study of crolibulin (NCT00423410), we measured treatment-induced changes in tumor perfusion and water diffusivity (ADC) using dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI), and computed correlates of crolibulin pharmacokinetics. 11 subjects with advanced solid tumors were imaged by MRI at baseline and 2-3 days post-crolibulin (13-24 mg/m2). ADC maps were computed from DW-MRI. Pre-contrast T1 maps were computed, co-registered with the DCE-MRI series, and maps of area-under-the-gadolinium-concentration-curve-at-90 s (AUC90s) and the Extended Tofts Model parameters ktrans, ve, and vp were calculated. There was a strong correlation between higher plasma drug [Formula: see text] and a linear combination of (1) reduction in tumor fraction with [Formula: see text] mM s, and, (2) increase in tumor fraction with [Formula: see text]. A higher plasma drug AUC was correlated with a linear combination of (1) increase in tumor fraction with [Formula: see text], and, (2) increase in tumor fraction with [Formula: see text]. These findings are suggestive of cell swelling and decreased tumor perfusion 2-3 days post-treatment with crolibulin. The multivariable linear regression models reported here can inform crolibulin dosing in future clinical studies of crolibulin combined with cytotoxic or immune-oncology agents.
SUBMITTER: Lorza AMA
PROVIDER: S-EPMC7468301 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA