Unknown

Dataset Information

0

Multidimensional Bone Density Phenotyping Reveals New Insights Into Genetic Regulation of the Pediatric Skeleton.


ABSTRACT: Osteoporosis is a complex disease with developmental origins. It is therefore important to understand the genetic contribution to pediatric areal bone mineral density (aBMD). Individual skeletal site phenotyping has been primarily used to identify pediatric aBMD loci. However, this approach is limited because there is a degree of aBMD discordance across skeletal sites. We therefore applied a novel multidimensional phenotyping approach to further understand the genetic regulation of pediatric aBMD. Our sample comprised a prospective, longitudinal cohort of 1293 children of European ancestry (52% female; up to seven annual measurements). Principal components analysis was applied to dual-energy X-ray absorptiometry-derived aBMD Z-scores for total hip, femoral neck, spine, and distal radius to generate multidimensional aBMD phenotypes (ie, principal component scores). We tested the association between a genetic score (percentage of bone lowering alleles at 63 loci) and each principal component. We also performed a genomewide association study (GWAS) using the multiethnic baseline data (n?=?1885) to identify novel loci associated with these principal components. The first component (PC1) reflected a concordant phenotypic model of the skeleton (eg, higher loading score?=?higher BMD across all sites). In contrast, PC2 was discordant for distal radius versus spine and hip aBMD, and PC3 was discordant for spine versus distal radius and hip aBMD. The genetic score was associated with PC1 (beta?=?-0.05, p?=?3.9?×?10-10 ), but was not associated with discordant PC2 or PC3. Our GWAS discovered variation near CPED1 that associated with PC2 (rs67991850, p?=?2.5?×?10-11 ) and near RAB11FIP5 (rs58649746, p?=?4.8?×?10-9 ) that associated with PC3. In conclusion, an established bone fragility genetic summary score was associated with a concordant skeletal phenotype, but not discordant skeletal phenotypes. Novel associations were observed for the discordant multidimensional skeletal phenotypes that provide new biological insights into the developing skeleton. © 2017 American Society for Bone and Mineral Research.

SUBMITTER: Mitchell JA 

PROVIDER: S-EPMC7473448 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multidimensional Bone Density Phenotyping Reveals New Insights Into Genetic Regulation of the Pediatric Skeleton.

Mitchell Jonathan A JA   Chesi Alessandra A   Cousminer Diana L DL   McCormack Shana E SE   Kalkwarf Heidi J HJ   Lappe Joan M JM   Gilsanz Vicente V   Oberfield Sharon E SE   Shepherd John A JA   Kelly Andrea A   Zemel Babette S BS   Grant Struan Fa SF  

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20180330 5


Osteoporosis is a complex disease with developmental origins. It is therefore important to understand the genetic contribution to pediatric areal bone mineral density (aBMD). Individual skeletal site phenotyping has been primarily used to identify pediatric aBMD loci. However, this approach is limited because there is a degree of aBMD discordance across skeletal sites. We therefore applied a novel multidimensional phenotyping approach to further understand the genetic regulation of pediatric aBM  ...[more]

Similar Datasets

| S-EPMC7822523 | biostudies-literature
2021-01-12 | GSE158151 | GEO
2021-01-12 | GSE158150 | GEO
2021-01-12 | GSE158149 | GEO
2021-01-12 | GSE158148 | GEO
2021-01-12 | GSE158147 | GEO
2021-01-12 | GSE158146 | GEO
| S-EPMC7349482 | biostudies-literature
| S-EPMC5606849 | biostudies-literature
| S-EPMC4970901 | biostudies-literature