Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence.
Ontology highlight
ABSTRACT: The role of artificial intelligence (AI) in healthcare for pregnant women. To assess the role of AI in women's health, discover gaps, and discuss the future of AI in maternal health. A systematic review of English articles using EMBASE, PubMed, and SCOPUS. Search terms included pregnancy and AI. Research articles and book chapters were included, while conference papers, editorials and notes were excluded from the review. Included papers focused on pregnancy and AI methods, and pertained to pharmacologic interventions. We identified 376 distinct studies from our queries. A final set of 31 papers were included for the review. Included papers represented a variety of pregnancy concerns and multidisciplinary applications of AI. Few studies relate to pregnancy, AI, and pharmacologics and therefore, we review carefully those studies. External validation of models and techniques described in the studies is limited, impeding on generalizability of the studies. Our review describes how AI has been applied to address maternal health, throughout the pregnancy process: preconception, prenatal, perinatal, and postnatal health concerns. However, there is a lack of research applying AI methods to understand how pharmacologic treatments affect pregnancy. We identify three areas where AI methods could be used to improve our understanding of pharmacological effects of pregnancy, including: (a) obtaining sound and reliable data from clinical records (15 studies), (b) designing optimized animal experiments to validate specific hypotheses (1 study) to (c) implementing decision support systems that inform decision-making (11 studies). The largest literature gap that we identified is with regards to using AI methods to optimize translational studies between animals and humans for pregnancy-related drug exposures.
SUBMITTER: Davidson L
PROVIDER: S-EPMC7473961 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA