Unknown

Dataset Information

0

Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us?


ABSTRACT: Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.

SUBMITTER: Cauduro GP 

PROVIDER: S-EPMC7474390 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential Expression and PAH Degradation: What <i>Burkholderia vietnamiensi</i>s G4 Can Tell Us?

Cauduro Guilherme Pinto GP   Leal Ana Lusia AL   Lopes Tiago Falcón TF   Marmitt Marcela M   Valiati Victor Hugo VH  

International journal of microbiology 20200827


Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus <i>Burkholderia</i> is amongst the microorganisms known for being capable of degrading persistent compounds; its strain  ...[more]

Similar Datasets

| S-EPMC93320 | biostudies-literature
| S-EPMC427800 | biostudies-literature
| PRJNA10696 | ENA
| S-EPMC6193391 | biostudies-literature
| S-EPMC139607 | biostudies-literature
| S-EPMC3544081 | biostudies-literature
| S-EPMC1828760 | biostudies-literature
| S-EPMC7354579 | biostudies-literature
| S-EPMC7711166 | biostudies-literature
| S-EPMC3417382 | biostudies-literature