Project description:BackgroundGrowing evidence points to a key role of endothelial dysfunction in the pathogenesis of COVID-19. In this study, we evaluated changes in endothelium-dependent flow-mediated dilation (FMD) in a cohort of convalescent COVID-19 patients undergoing pulmonary rehabilitation (PR).MethodsAfter swab test negativization, convalescent COVID-19 patients referring to a post-acute care facility for PR were consecutively screened for inclusion. Study procedures were performed at the time of hospitalization and discharge.ResultsWe enrolled 82 convalescent COVID-19 patients (85.4% males, mean age 60.4 years). After PR, a significant improvement in most pulmonary function tests and exercise capacity was documented. FMD changed from 2.48% ± 2.01 to 4.24% ± 2.81 (p < 0.001), corresponding to a 70.9% increase. Significantly higher changes in FMD were found in patients without a history of vascular events as compared to those with (+2.04% ± 2.30 vs. +0.61% ± 1.83, p = 0.013). Values of forced expiratory volume in 1 s (FEV1%), forced vital capacity (FVC%) and diffusion capacity for carbon monoxide (DLCO%) significantly and directly correlated with FMD both at baseline and after PR. Patients with normal FEV1% (≥80% predicted) during the overall study period or those normalizing FEV1% after PR showed a more significant FMD change as compared to patients with persistently impaired FEV1% (<80% predicted) (p for trend = 0.029). This finding was confirmed in a multivariate analysis.ConclusionsClinically evaluated endothelial function improves after PR in convalescent COVID-19 patients. A direct and persistent association between the severity of pulmonary and vascular disease can be hypothesized. Endothelial function testing may be useful in the follow-up of convalescent COVID-19 patients.
Project description:PurposeTo investigate, in a meta-analysis, the frequency of pulmonary embolism (PE) in patients with COVID-19 and whether D-dimer assessment may be useful to select patients for computed tomography pulmonary angiography (CTPA).MethodsA systematic literature search was performed for original studies which reported the frequency of PE on CTPA in patients with COVID-19. The frequency of PE, the location of PE, and the standardized mean difference (SMD) of D-dimer levels between patients with and without PE were pooled by random effects models.ResultsSeventy-one studies were included. Pooled frequencies of PE in patients with COVID-19 at the emergency department (ED), general wards, and intensive care unit (ICU) were 17.9% (95% CI: 12.0-23.8%), 23.9% (95% CI: 15.2-32.7%), and 48.6% (95% CI: 41.0-56.1%), respectively. PE was more commonly located in peripheral than in main pulmonary arteries (pooled frequency of 65.3% [95% CI: 60.0-70.1%] vs. 32.9% [95% CI: 26.7-39.0%]; OR = 3.540 [95% CI: 2.308-5.431%]). Patients with PE had significantly higher D-dimer levels (pooled SMD of 1.096 [95% CI, 0.844-1.349]). D-dimer cutoff levels which have been used to identify patients with PE varied between 1000 and 4800 μg/L.ConclusionThe frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries, which suggests local thrombosis to play a major role. D-dimer assessment may help to select patients with COVID-19 for CTPA, using D-dimer cutoff levels of at least 1000 μg/L.Key points• The frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. • PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries. • D-dimer levels are significantly higher in patients with COVID-19 who have PE.
Project description:Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward in several centers in Greece and the Netherlands and whole blood transcriptomic analysis was performed before and after starting dexamethasone treatment. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and their transcriptome was assessed.
Project description:BACKGROUND:Coronavirus disease 2019 (COVID-19) is characterised by dyspnoea and abnormal coagulation parameters, including raised D-dimer. Data suggests a high incidence of pulmonary embolism (PE) in ventilated patients with COVID-19. OBJECTIVES:To determine the incidence of PE in hospitalised patients with COVID-19 and the diagnostic yield of Computer Tomography Pulmonary Angiography (CTPA) for PE. We also examined the utility of D-dimer and conventional pre-test probability for diagnosis of PE in COVID-19. PATIENTS/METHODS:Retrospective review of single-centre data of all CTPA studies in patients with suspected or confirmed COVID-19 identified from Electronic Patient Records (EPR). RESULTS:There were 1477 patients admitted with COVID-19 and 214 CTPA scans performed, of which n = 180 (84%) were requested outside of critical care. The diagnostic yield for PE was 37%. The overall proportion of PE in patients with COVID-19 was 5.4%. The proportions with Wells score of ?4 ('PE likely') was 33/134 (25%) without PE vs 20/80 (25%) with PE (P = 0.951). The median National Early Warning-2 (NEWS2) score (illness severity) was 5 (interquartile range [IQR] 3-9) in PE group vs 4 (IQR 2-7) in those without PE (P = 0.133). D-dimer was higher in PE (median 8000 ng/mL; IQR 4665-8000 ng/mL) than non-PE (2060 ng/mL, IQR 1210-4410 ng/mL, P < 0.001). In the 'low probability' group, D-dimer was higher (P < 0.001) in those with PE but had a limited role in excluding PE. CONCLUSIONS:Even outside of the critical care environment, PE in hospitalised patients with COVID-19 is common. Of note, approaching half of PE events were diagnosed on hospital admission. More data are needed to identify an optimal diagnostic pathway in patients with COVID-19. Randomised controlled trials of intensified thromboprophylaxis are urgently needed.