SiRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice.
Ontology highlight
ABSTRACT: Atherosclerotic lesional macrophages express molecules that promote plaque progression, but lack of mechanisms to therapeutically target these molecules represents a major gap in translational cardiovascular research. Here, we tested the efficacy of a small interfering RNA (siRNA) nanoparticle (NP) platform targeting a plaque-destabilizing macrophage molecule-Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ). CaMKIIγ becomes activated in advanced human and mouse plaque macrophages and drives plaque necrosis by suppressing the expression of the efferocytosis receptor MerTK. When macrophage-targeted siCamk2g NPs were administered to Western diet-fed Ldlr -/- mice, the atherosclerotic lesions showed decreased CaMKIIγ and increased MerTK expression in macrophages, improved phagocytosis of apoptotic cells (efferocytosis), decreased necrotic core area, and increased fibrous cap thickness-all signs of increased plaque stability-compared with mice treated with control siRNA NPs. These findings demonstrate that atherosclerosis-promoting genes in plaque macrophages can be targeted with siRNA NPs in a preclinical model of advanced atherosclerosis.
SUBMITTER: Tao W
PROVIDER: S-EPMC7476570 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA