In ovo metabolism and yolk glucocorticoid concentration interact to influence embryonic glucocorticoid exposure patterns.
Ontology highlight
ABSTRACT: Vertebrates release glucocorticoids during stressful events. If stress occurs during reproduction, the resulting offspring can show altered phenotypes that are thought to arise from increased exposure to maternal glucocorticoids. Developing offspring can metabolize maternal glucocorticoids, which can alter the pattern of exposure they encounter. For egg laying vertebrates, we are just beginning to understand how embryonic steroid metabolism impacts embryonic exposure to maternal glucocorticoids. Here we injected three doses of radioactive corticosterone into Japanese quail (Coturnix japonica) eggs to determine the degree of embryonic exposure at days six and nine of development. We found that increasing injection dose increased the amount of radioactivity found in the embryo at day six but by day nine the effect of injection dose disappeared as the amount of radioactivity within the embryo dropped to equivalent levels for all three doses. Interestingly, when examined as a percentage of initial dose, there were no differences between treatment groups at any time points. Importantly, using thin-layer chromatography we characterized that some free steroid, putatively identified as corticosterone, does reach the developing embryo. Together, our data suggest that the in ovo metabolism of maternal corticosterone can eventually eliminate it from the egg, but before this happens, embryos developing in eggs with elevated amounts of maternal corticosterone are exposed to higher levels early in development. This has important implications for how we understand the developmental steroid environment and the mechanisms underlying maternal stress effects.
SUBMITTER: Vassallo BG
PROVIDER: S-EPMC7480747 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA