Unknown

Dataset Information

0

Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression.


ABSTRACT: Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of Kras mutation-driven ZNF322A transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. Methods: Luciferase activity, RT-qPCR and ChIP-qPCR assays were used to examine transcription regulation in cell models. In vitro and in vivo angiogenesis assays were conducted. Immunohistochemistry, Kaplan-Meier method and multivariate Cox regression assays were performed to examine the clinical correlation in tumor specimens from lung cancer patients. Results: We validated that Yin Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation. Reconstitution experiments by knocking down YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration, proliferation and ZNF322A promoter activity. Knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo. Notably, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) gene which encodes a secreted factor that activates pro-angiogenic responses in endothelial cells. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patient samples determined using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A, Shh and CD31 correlated with poor prognosis. Conclusions: These findings highlight the mechanism by which dysregulation of Kras/YY1/ZNF322/Shh transcriptional axis enhances neo-angiogenesis and cancer progression in lung cancer. Therapeutic strategies that target Kras/YY1/ZNF322A/Shh signaling axis may provide new insight on targeted therapy for lung cancer patients.

SUBMITTER: Lin CC 

PROVIDER: S-EPMC7481419 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression.

Lin Che-Chung CC   Kuo I-Ying IY   Wu Li-Ting LT   Kuan Wen-Hui WH   Liao Sheng-You SY   Jen Jayu J   Yang You-En YE   Tang Cheng-Wei CW   Chen Yi-Rong YR   Wang Yi-Ching YC  

Theranostics 20200808 22


Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of <i>Kras</i> mutation-driven <i>ZNF322A</i> transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. <b>Methods:</b> Luciferase acti  ...[more]

Similar Datasets

| S-EPMC7812261 | biostudies-literature
| S-EPMC2267280 | biostudies-literature
| S-EPMC10620822 | biostudies-literature
| S-EPMC4203520 | biostudies-other
| S-EPMC7196310 | biostudies-literature
| S-EPMC9759620 | biostudies-literature
| S-EPMC5008392 | biostudies-other
| S-EPMC10197948 | biostudies-literature
2023-09-15 | GSE229559 | GEO
| S-EPMC7979819 | biostudies-literature