Unknown

Dataset Information

0

An Integrated Smartphone-Based Genetic Analyzer for Qualitative and Quantitative Pathogen Detection.


ABSTRACT: The use of the smartphone is an ideal platform to realize the future point-of-care (POC) diagnostic system. Herein, we propose an integrated smartphone-based genetic analyzer. It consists of a smartphone and an integrated genetic analysis unit (i-Gene), in which the power of the smartphone was utilized for heating the gene amplification reaction, and the camera function was used for imaging the colorimetric change of the reaction for quantitative and multiplex foodborne pathogens. The housing of i-Gene was fabricated by using a 3D printer, which was equipped with a macro lens, white LEDs, a disposable microfluidic chip for loop-mediated isothermal amplification (LAMP), a thin-film heater, and a power booster. The i-Gene was installed on the iPhone in alignment with a camera. The LAMP mixture for Eriochrome Black T (EBT) colorimetric detection was injected into the LAMP chip to identify Escherichia coli O157:H7, Salmonella typhimurium, and Vibrio parahaemolyticus. The proportional-integral-derivative controller-embedded film heater was powered by a 5.0 V power bank to maintain 63 °C for the LAMP reaction. When the LAMP proceeded, the color was changed from violet to blue, which was real-time monitored by the smartphone complementary metal oxide semiconductor camera. The images were transported to the desktop computer via Wi-Fi. The quantitative LAMP profiles were obtained by plotting the ratio of green/red intensity versus the reaction time. We could identify E. coli O157:H7 with a limit of detection of 101 copies/?L within 60 min. Our proposed smartphone-based genetic analyzer offers a portable, simple, rapid, and cost-effective POC platform for future diagnostic markets.

SUBMITTER: Nguyen HV 

PROVIDER: S-EPMC7482303 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Integrated Smartphone-Based Genetic Analyzer for Qualitative and Quantitative Pathogen Detection.

Nguyen Hau Van HV   Nguyen Van Dan VD   Liu Fei F   Seo Tae Seok TS  

ACS omega 20200727 35


The use of the smartphone is an ideal platform to realize the future point-of-care (POC) diagnostic system. Herein, we propose an integrated smartphone-based genetic analyzer. It consists of a smartphone and an <i>i</i>ntegrated <i>gene</i>tic analysis unit (i-Gene), in which the power of the smartphone was utilized for heating the gene amplification reaction, and the camera function was used for imaging the colorimetric change of the reaction for quantitative and multiplex foodborne pathogens.  ...[more]

Similar Datasets

| S-EPMC7265458 | biostudies-literature
| S-EPMC6197494 | biostudies-literature
| S-EPMC1933224 | biostudies-literature
| S-EPMC5687774 | biostudies-literature
| S-EPMC4371189 | biostudies-literature
| S-EPMC9498264 | biostudies-literature
| S-EPMC8064114 | biostudies-literature
| S-EPMC8469369 | biostudies-literature
2005-09-20 | GSE2744 | GEO
| S-EPMC6707147 | biostudies-literature