Unknown

Dataset Information

0

Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker.


ABSTRACT: Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the cation can disrupt the biological function of small dicarboxylates. Here, we have developed a strategy using TPP to release dicarboxylates selectively within mitochondria. For this, the dicarboxylate is attached to a TPP compound via a single ester bond, which is then cleaved by intramitochondrial esterase activity, releasing the dicarboxylate within the organelle. Leaving the second carboxylic acid free also means mitochondrial uptake is dependent on the pH gradient across the inner membrane. To assess this strategy, we synthesized a range of TPP monoesters of the model dicarboxylate, malonate. We then tested their mitochondrial accumulation and ability to deliver malonate to isolated mitochondria and to cells, in vitro and in vivo. A TPP-malonate monoester compound, TPP11-malonate, in which the dicarboxylate group was attached to the TPP compound via a hydrophobic undecyl link, was most effective at releasing malonate within mitochondria in cells and in vivo. Therefore, we have developed a TPP-monoester platform that enables the selective release of bioactive dicarboxylates within mitochondria.

SUBMITTER: Prag HA 

PROVIDER: S-EPMC7482397 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker.

Prag Hiran A HA   Kula-Alwar Duvaraka D   Pala Laura L   Caldwell Stuart T ST   Beach Timothy E TE   James Andrew M AM   Saeb-Parsy Kourosh K   Krieg Thomas T   Hartley Richard C RC   Murphy Michael P MP  

Molecular pharmaceutics 20200805 9


Many mitochondrial metabolites and bioactive molecules contain two carboxylic acid moieties that make them unable to cross biological membranes. Hence, there is considerable interest in facilitating the uptake of these molecules into cells and mitochondria to modify or report on their function. Conjugation to the triphenylphosphonium (TPP) lipophilic cation is widely used to deliver molecules selectively to mitochondria in response to the membrane potential. However, permanent attachment to the  ...[more]

Similar Datasets

| S-EPMC3763782 | biostudies-literature
| S-EPMC3345094 | biostudies-literature
| S-EPMC4260860 | biostudies-literature
| S-EPMC5287351 | biostudies-literature
| S-EPMC7079238 | biostudies-literature
| S-EPMC9147807 | biostudies-literature
| S-EPMC4780193 | biostudies-literature
| S-EPMC5386467 | biostudies-other
| S-EPMC3536904 | biostudies-literature
| S-EPMC2817964 | biostudies-literature