ABSTRACT: Fatty-acid(FA)-synthase(FASN) is a druggable lipogenic oncoprotein whose blockade causes metabolic disruption. Whether drug-induced metabolic perturbation is essential for anticancer drug-action, or is just a secondary-maybe even a defence response-is still unclear. To address this, SKOV3 and OVCAR3 ovarian cancer(OC) cell lines with clear cell and serous histology, two main OC subtypes, were exposed to FASN-inhibitor G28UCM. Growth-inhibition was compared with treatment-induced cell-metabolomes, lipidomes, proteomes and kinomes. SKOV3 and OVCAR3 were equally sensitive to low-dose G28UCM, but SKOV3 was more resistant than OVCAR3 to higher concentrations. Metabolite levels generally decreased upon treatment, but individual acylcarnitines, glycerophospholipids, sphingolipids, amino-acids, biogenic amines, and monosaccharides reacted differently. Drug-induced effects on central-carbon-metabolism and oxidative-phosphorylation (OXPHOS) were essentially different in the two cell lines, since drug-naïve SKOV3 are known to prefer glycolysis, while OVCAR3 favour OXPHOS. Moreover, drug-dependent increase of desaturases and polyunsaturated-fatty-acids (PUFAs) were more pronounced in SKOV3 and appear to correlate with G28UCM-tolerance. In contrast, expression and phosphorylation of proteins that control apoptosis, FA synthesis and membrane-related processes (beta-oxidation, membrane-maintenance, transport, translation, signalling and stress-response) were concordantly affected. Overall, membrane-disruption and second-messenger-silencing were crucial for anticancer drug-action, while metabolic-rewiring was only secondary and may support high-dose-FASN-inhibitor-tolerance. These findings may guide future anti-metabolic cancer intervention.