Unknown

Dataset Information

0

Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale.


ABSTRACT: Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.

SUBMITTER: Li X 

PROVIDER: S-EPMC7483769 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale.

Li Xihao X   Li Zilin Z   Zhou Hufeng H   Gaynor Sheila M SM   Liu Yaowu Y   Chen Han H   Sun Ryan R   Dey Rounak R   Arnett Donna K DK   Aslibekyan Stella S   Ballantyne Christie M CM   Bielak Lawrence F LF   Blangero John J   Boerwinkle Eric E   Bowden Donald W DW   Broome Jai G JG   Conomos Matthew P MP   Correa Adolfo A   Cupples L Adrienne LA   Curran Joanne E JE   Freedman Barry I BI   Guo Xiuqing X   Hindy George G   Irvin Marguerite R MR   Kardia Sharon L R SLR   Kathiresan Sekar S   Khan Alyna T AT   Kooperberg Charles L CL   Laurie Cathy C CC   Liu X Shirley XS   Mahaney Michael C MC   Manichaikul Ani W AW   Martin Lisa W LW   Mathias Rasika A RA   McGarvey Stephen T ST   Mitchell Braxton D BD   Montasser May E ME   Moore Jill E JE   Morrison Alanna C AC   O'Connell Jeffrey R JR   Palmer Nicholette D ND   Pampana Akhil A   Peralta Juan M JM   Peyser Patricia A PA   Psaty Bruce M BM   Redline Susan S   Rice Kenneth M KM   Rich Stephen S SS   Smith Jennifer A JA   Tiwari Hemant K HK   Tsai Michael Y MY   Vasan Ramachandran S RS   Wang Fei Fei FF   Weeks Daniel E DE   Weng Zhiping Z   Wilson James G JG   Yanek Lisa R LR   Neale Benjamin M BM   Sunyaev Shamil R SR   Abecasis Gonçalo R GR   Rotter Jerome I JI   Willer Cristen J CJ   Peloso Gina M GM   Natarajan Pradeep P   Lin Xihong X  

Nature genetics 20200824 9


Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introdu  ...[more]

Similar Datasets

| S-EPMC10008172 | biostudies-literature
| S-EPMC4851421 | biostudies-literature
| S-EPMC5501866 | biostudies-literature
| S-EPMC6507043 | biostudies-literature
| S-EPMC5684233 | biostudies-literature
| S-EPMC11354340 | biostudies-literature
| S-EPMC7056612 | biostudies-literature
| S-EPMC6185909 | biostudies-literature
| S-EPMC4580299 | biostudies-literature
| S-EPMC5429001 | biostudies-literature