Project description:BACKGROUND:The recombinant IL-1 receptor antagonist anakinra-currently approved for the treatment of autoinflammatory diseases-blocks IL-1?-mediated inflammatory signaling. As inflammation is a major driver of cancer, we hypothesized that anakinra might be able to mitigate glioblastoma (GBM) aggressiveness. METHODS:Primary GBM or T98G cells were incubated alone or with peripheral blood mononuclear cells (PBMCs) and were subsequently treated with IL-1? and/or anakinra. T cells were obtained by magnetic bead isolation. Protein and mRNA expression were quantified by SDS-PAGE, qRT-PCR, and ELISA, respectively. Cell proliferation and apoptosis were analyzed via flow cytometry. Chemotaxis was studied via time-lapse microscopy. RESULTS:Upon IL-1? stimulation, anakinra attenuated proinflammatory gene expression in both GBM cells and PBMCs, and mitigated tumor migration and proliferation. In a more lifelike model replacing IL-1? stimulation by GBM-PBMC co-culture, sole presence of PBMCs proved sufficient to induce a proinflammatory phenotype in GBM cells with enhanced proliferation and migration rates and attenuated apoptosis. Anakinra antagonized these pro-tumorigenic effects and, moreover, reduced inflammatory signaling in T cells without compromising anti-tumor effector molecules. CONCLUSION:By dampening the inflammatory crosstalk between GBM and immune cells, anakinra mitigated GBM aggressiveness. Hence, counteracting IL-1?-mediated inflammation might be a promising strategy to pursue.
Project description:The purpose of this study was to characterize acute changes in inflammatory pathways in the mouse eye after blast-mediated traumatic brain injury (bTBI) and to determine whether modulation of these pathways could protect the structure and function of retinal ganglion cells (RGC). The bTBI was induced in C57BL/6J male mice by exposure to three 20 psi blast waves directed toward the head with the body shielded, with an inter-blast interval of one hour. Acute cytokine expression in retinal tissue was measured through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) four hours post-blast. Increased retinal expression of interleukin (lL)-1?, IL-1?, IL-6, and tumor necrosis factor (TNF)? was observed in bTBI mice exposed to blast when compared with shams, which was associated with activation of microglia and macroglia reactivity, assessed via immunohistochemistry with ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein, respectively, one week post-blast. Blockade of the IL-1 pathway was accomplished using anakinra, an IL-1RI antagonist, administered intra-peritoneally for one week before injury and continuing for three weeks post-injury. Retinal function and RGC layer thickness were evaluated four weeks post-injury using pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. After bTBI, anakinra treatment resulted in a preservation of RGC function and RGC structure when compared with saline treated bTBI mice. Optic nerve integrity analysis demonstrated a trend of decreased damage suggesting that IL-1 blockade also prevents axonal damage after blast. Blast exposure results in increased retinal inflammation including upregulation of pro-inflammatory cytokines and activation of resident microglia and macroglia. This may explain partially the RGC loss we observed in this model, as blockade of the acute inflammatory response after injury with the IL-1R1 antagonist anakinra resulted in preservation of RGC function and RGC layer thickness.
Project description:Cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity are two major CAR T related toxicities. With the interventions of Tocilizumab and steroids, many patients can recover from severe CRS. However, some patients are refractory to steroids and develop life-threatening consequences. Ruxolitinib is an oral JAKs inhibitor and promising drug in inflammatory diseases. In this pilot study, we evaluate the efficacy of Ruxolitinib in CRS. Of 14 r/r B-ALL children who received CD19 or CD22 CAR T cell therapies, 4 patients developed severe (?grade 3) CRS with symptoms that were not alleviated with high-dose steroids and thus received ruxolitinib. Rapid resolution of CRS symptoms was observed in 4 patients after ruxolitinib treatment. Serum cytokines significantly decreased after ruxolitinib intervention. All patients achieved complete remission on day 30 after infusion, and we could still detect CAR T expansion in vivo despite usage of ruxolitinib. There were no obvious adverse events related to ruxolitinib. In vitro assays revealed that ruxolitinib could dampen CAR T expansion and cytotoxicity, suggesting that the timing and dosage of ruxolitinib should be carefully considered to avoid dampening anti-leukaemia response. Our results suggest that ruxolitinib is active and well tolerated in steroid-refractory and even life-threatening CRS.
Project description:Kawasaki disease (KD) vasculitis is an acute febrile illness of childhood characterized by systemic vasculitis of unknown origin, and is the most common cause of acquired heart disease among children in the United States. While histological evidence of myocarditis can be found in all patients with acute KD, only a minority of patients are clinically symptomatic and a subset demonstrate echocardiographic evidence of impaired myocardial function, as well as increased left ventricular mass, presumed to be due to myocardial edema and inflammation. Up to a third of KD patients fail to respond to first-line therapy with intravenous immunoglobulin (IVIG), and the use of interleukin (IL)-1 receptor antagonist (IL-1Ra, anakinra) is currently being investigated as an alternative therapeutic approach to treat IVIG-resistant patients. In this study, we sought to investigate the effect of IL-1Ra on myocardial dysfunction and its relation to myocarditis development during KD vasculitis. We used the Lactobacillus casei cell-wall extract (LCWE)-induced murine model of KD vasculitis and investigated the effect of IL-1Ra pretreatment on myocardial dysfunction during KD vasculitis by performing histological, magnetic resonance imaging (MRI) and echocardiographic evaluations. IL-1Ra pretreatment significantly reduced KD-induced myocardial inflammation and N-terminal pro B-type natriuretic peptide (NT-proBNP) release. Both MRI and echocardiographic studies on LCWE-injected KD mice demonstrated that IL-1Ra pretreatment results in an improved ejection fraction and a normalized left ventricular function. These findings further support the potential beneficial effects of IL-1Ra therapy in preventing the cardiovascular complications in acute KD patients, including the myocarditis and myocardial dysfunction associated with acute KD.
Project description:Chimeric antigen receptor (CAR) T cell therapy is a new frontier in cancer therapy. The toxicity of cytokine release syndrome (CRS) has become one of the major challenges that limits the wider use of CAR T cells to fight cancer. Exploration of CRS pathogenesis and treatment is becoming the main focus of ongoing studies. Myeloid-derived macrophages were found to play a critical role in CRS pathogenesis, and these cells mediate the major production of core cytokines, including IL-6, IL-1 and interferon (IFN)-γ. Colocalization of macrophages and CAR T cells was also identified as necessary for inducing CRS, and CD40L-CD40 signaling might be the key cell-cell interaction in the tumor microenvironment. Macrophages might also take part in endocrine and self-amplified catecholamine loops that can directly activate cytokine production and release by macrophages during CRS. In addition to tocilizumab and corticosteroids, several novel CRS therapies targeting macrophage-centered pathways have shown much potential, including GM-CSF blockade and administration of atrial natriuretic peptide (ANP) and α-methyltyrosine (metyrosine, MTR). In the present review, we summarized the role of macrophages in CRS and new developments in therapeutic strategies for CRS-associated toxicities.
Project description:Interleukin-1 beta (IL-1β), a pro-inflammatory cytokine, has been ascribed a role in the expansion of myeloid progenitors in acute myeloid leukemia (AML) and in promoting myeloid cell-induced suppression of lymphocyte-mediated immunity against malignant cells. This study aimed at defining the potential impact of IL-1β in the post-remission phase of AML patients receiving immunotherapy for relapse prevention in an international phase IV trial of 84 patients (ClinicalTrials.gov; NCT01347996). Consecutive serum samples were collected from AML patients in first complete remission (CR) who received cycles of relapse-preventive immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2). Low IL-1β serum levels before and after the first HDC/IL-2 treatment cycle favorably prognosticated leukemia-free survival and overall survival. Serum levels of IL-1β were significantly reduced in patients receiving HDC/IL-2. HDC also reduced the formation of IL-1β from activated human PBMCs in vitro. Additionally, high serum levels of the IL-1 receptor antagonist IL-1RA were associated with favorable outcome, and AML patients with low IL-1β along with high IL-1RA levels were strikingly protected against leukemic relapse. Our results suggest that strategies to target IL-1β might impact on relapse risk and survival in AML.
Project description:Preclinical studies show that blocking Interleukin-1 (IL-1) retards the progression of Amyotrophic Lateral Sclerosis (ALS). We assessed the safety of Anakinra (ANA), an IL-1 receptor antagonist, in ALS patients. In a single arm pilot study we treated 17 ALS patients with ANA (100 mg) daily for one year. We selected patients with dominant or exclusive lower motor neuron degeneration (LMND) presentation, as peripheral nerves may be more accessible to the drug. Our primary endpoint was safety and tolerability. Secondary endpoints included measuring disease progression with the revised ALS functional rating scale (ALSFRSr). We also quantified serum inflammatory markers. For comparison, we generated a historical cohort of 47 patients that fit the criteria for enrollment, disease characteristics and rate of progression of the study group. Only mild adverse events occurred in ALS patients treated with ANA. Notably, we observed lower levels of cytokines and the inflammatory marker fibrinogen during the first 24 weeks of treatment. Despite of this, we could not detect a significant reduction in disease progression during the same period in patients treated with ANA compared to controls as measured by the ALSFRSr. In the second part of the treatment period we observed an increase in serum inflammatory markers. Sixteen out of the 17 patients (94%) developed antibodies against ANA. This study showed that blocking IL-1 is safe in patients with ALS. Further trials should test whether targeting IL-1 more efficiently can help treating this devastating disease.ClinicalTrials.gov NCT01277315.
Project description:Treatment with CD19 or CD22-targeted chimeric antigen receptor-engineered T (CD19/CD22 CAR-T) cells achieve complete responses in 60-90% of adults and children with refractory or relapsed (R/R) acute lymphoblastic leukemia (ALL). This led to the approval of tisagenlecleucel (Kymriah) by the FDA and several European regulatory agencies in ALL patients up to 25 years of age. Although CAR T-cell therapy is likely to transform the ALL therapeutic landscape, its development and wide dissemination have been impacted by the occurrence of significant toxicities; namely, cytokine release syndrome (CRS) and Immune effector cell-Associated Neurotoxicity Syndrome (ICANS) have been reported at higher rates in ALL patients compared to other B cell malignancies, particularly in the adult population. Here, we review recent data suggesting a significant proportion of ALL patients are at risk of developing severe, sometimes life-threatening, CRS, and ICANS after CD19 and CD22 CAR T-cell therapy. After describing the key clinical and laboratory features of severe CRS and ICANS, we explore the disease and treatment-related factors that may predict the severity of these toxicities. Last, we review strategies under investigation in the prophylactic and therapeutic settings to improve the safety of CAR T-cells for ALL.
Project description:Decades ago, the study of cancer biology was mainly focused on the tumor itself, paying little attention to the tumor microenvironment (TME). Currently, it is well recognized that the TME plays a vital role in cancer development and progression, with emerging treatment strategies focusing on different components of the TME, including tumoral cells, blood vessels, fibroblasts, senescent cells, inflammatory cells, inflammatory factors, among others. There is a well-accepted relationship between chronic inflammation and cancer development. Interleukin-1 (IL-1), a potent pro-inflammatory cytokine commonly found at tumor sites, is considered one of the most important inflammatory factors in cancer, and has been related with carcinogenesis, tumor growth and metastasis. Increasing evidence has linked development of head and neck squamous cell carcinoma (HNSCC) with chronic inflammation, and particularly, with IL-1 signaling. This review focuses on the most important members of the IL-1 family, with emphasis on how their aberrant expression can promote HNSCC development and metastasis, highlighting possible clinical applications.
Project description:N-Cadherin is a cell surface protein that is critical for cell-cell adhesion and is essential for structural integrity of tissues. In the ovary, it is expressed by granulosa cells and cumulus cells junctions throughout ovarian development. Importantly, it is also present between oocyte (egg) and surround cumulus cells, and is the only physical type of communication that is present between the egg and its surrounding cells.