Unknown

Dataset Information

0

Phosphorylation within the bipartite NLS alters the localization and toxicity of the ER stress response factor DDIT3/CHOP.


ABSTRACT: Regulated nuclear-cytoplasmic trafficking is a well-established mechanism utilized by cells to regulate adaptive and maladaptive responses to acute oxidant stress. Commonly associated with endoplasmic reticulum stress, the bZIP transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP/DDIT3) mediates the cellular response to redox stress with effects on cellular growth, differentiation, and survival. We show through functional analyses that CHOP contains a conserved, compound pat4/bipartite nuclear localization signal within the basic DNA-binding domain. Using phylogenetic analyses and mass spectrometry, we now show that Ser107 located within the linker region of the bipartite NLS domain is a substrate for phosphorylation under standard culture conditions. Studies using the S107E phospho-mimic of CHOP indicate that changes in the charge properties at this residue regulate CHOP's nuclear-to-cytoplasmic ratio. And while co-stimulation with the SERCA inhibitor thapsigargin induced injury in cells expressing wild-type CHOP, the S107A point-mutant blocked this response. These findings indicate that phosphorylation within the bipartite NLS exerts regulatory effects on both the subcellular localization and toxic potential of DDIT3/CHOP. Future studies geared towards defining the relevant kinase/phosphatase networks that converge on the phosphorylation-regulated NLS (prNLS) phosphoepitope may provide an opportunity to constrain cellular damage in the context of acute ER stress.

SUBMITTER: Bartko JC 

PROVIDER: S-EPMC7484389 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8557800 | biostudies-literature
| S-EPMC4548243 | biostudies-literature
| S-EPMC3322118 | biostudies-literature
| S-EPMC2964165 | biostudies-literature
| S-EPMC4460075 | biostudies-literature
| S-EPMC3858281 | biostudies-literature
| S-EPMC6130050 | biostudies-literature
2004-12-17 | GSE2082 | GEO
| S-EPMC3406602 | biostudies-literature
| S-EPMC3151061 | biostudies-literature