Research on the potential mechanism of Chuanxiong Rhizoma on treating Diabetic Nephropathy based on network pharmacology.
Ontology highlight
ABSTRACT: Background: Chuanxiong Rhizoma is one of the traditional Chinese medicines which have been used for years in the treatment of diabetic nephropathy (DN). However, the mechanism of Chuanxiong Rhizoma in DN has not yet been fully understood. Methods: We performed network pharmacology to construct target proteins interaction network of Chuanxiong Rhizoma. Active ingredients were acquired from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. DRUGBANK database was used to predict target proteins of Chuanxiong Rhizoma. Gene ontology (GO) biological process analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed for functional prediction of the target proteins. Molecular docking was applied for evaluating the drug interactions between hub targets and active ingredients. Results: Twenty-eight target genes fished by 6 active ingredients of Chuanxiong Rhizoma were obtained in the study. The top 10 significant GO analyses and 6 KEGG pathways were enriched for genomic analysis. We also acquired 1366 differentially expressed genes associated with DN from GSE30528 dataset, including five target genes: KCNH2, NCOA1, KDR, NR3C2 and ADRB2. Molecular docking analysis successfully combined KCNH2, NCOA1, KDR and ADRB2 to Myricanone with docking scores from 4.61 to 6.28. NR3C2 also displayed good docking scores with Wallichilide and Sitosterol (8.13 and 8.34, respectively), revealing good binding forces to active compounds of Chuanxiong Rhizoma. Conclusions: Chuanxiong Rhizoma might take part in the treatment of DN through pathways associated with steroid hormone, estrogen, thyroid hormone and IL-17. KCNH2, NCOA1, KDR, ADRB2 and NR3C2 were proved to be the hub targets, which were closely related to corresponding active ingredients of Chuanxiong Rhizoma.
SUBMITTER: Hu S
PROVIDER: S-EPMC7484651 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA