Unknown

Dataset Information

0

Extracellular vesicle-cargo miR-185-5p reflects type II alveolar cell death after oxidative stress.


ABSTRACT: Acute respiratory distress syndrome (ARDS) is a devastating syndrome responsible for significant morbidity and mortality. Diffuse alveolar epithelial cell death, including but not limited to apoptosis and necroptosis, is one of the hallmarks of ARDS. Currently, no detectable markers can reflect this feature of ARDS. Hyperoxia-induced lung injury is a well-established murine model that mimics human ARDS. We found that hyperoxia and its derivative, reactive oxygen species (ROS), upregulate miR-185-5p, but not miR-185-3p, in alveolar cells. This observation is particularly more significant in alveolar type II (ATII) than alveolar type I (ATI) cells. Functionally, miR-185-5p promotes expression and activation of both receptor-interacting kinase I (RIPK1) and receptor-interacting kinase III (RIPK3), leading to phosphorylation of mixed lineage kinase domain-like (MLKL) and necroptosis. MiR-185-5p regulates this process probably via suppressing FADD and caspase-8 which are both necroptosis inhibitors. Furthermore, miR-185-5p also promotes intrinsic apoptosis, reflected by enhancing caspase-3/7 and 9 activity. Importantly, extracellular vesicle (EV)-containing miR-185-5p, but not free miR-185-5p, is detectable and significantly elevated after hyperoxia-induced cell death, both in vitro and in vivo. Collectively, hyperoxia-induced miR-185-5p regulates both necroptosis and apoptosis in ATII cells. The extracellular level of EV-cargo miR-185-5p is elevated in the setting of profound epithelial cell death.

SUBMITTER: Carnino JM 

PROVIDER: S-EPMC7484781 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Extracellular vesicle-cargo miR-185-5p reflects type II alveolar cell death after oxidative stress.

Carnino Jonathan M JM   Lee Heedoo H   He Xue X   Groot Michael M   Jin Yang Y  

Cell death discovery 20200910


Acute respiratory distress syndrome (ARDS) is a devastating syndrome responsible for significant morbidity and mortality. Diffuse alveolar epithelial cell death, including but not limited to apoptosis and necroptosis, is one of the hallmarks of ARDS. Currently, no detectable markers can reflect this feature of ARDS. Hyperoxia-induced lung injury is a well-established murine model that mimics human ARDS. We found that hyperoxia and its derivative, reactive oxygen species (ROS), upregulate miR-185  ...[more]

Similar Datasets

2019-11-29 | E-MTAB-7123 | biostudies-arrayexpress
2015-03-05 | E-GEOD-66488 | biostudies-arrayexpress
2020-03-01 | GSE143613 | GEO
2015-03-05 | GSE66488 | GEO
| S-EPMC7017198 | biostudies-literature
| S-ECPF-GEOD-66488 | biostudies-other
| S-EPMC5962849 | biostudies-literature
| S-EPMC8556236 | biostudies-literature
| S-EPMC6198336 | biostudies-literature