Unknown

Dataset Information

0

Therapeutic Interventions to Reduce Radiation Induced Dermal Injury in a Murine Model of Tissue Expander Based Breast Reconstruction.


ABSTRACT:

Background

Radiation therapy (XRT) induced dermal injury disrupts type I collagen architecture. This impairs cutaneous viscoelasticity, which may contribute to the high rate of complications in expander-based breast reconstruction with adjuvant XRT. The objective of this study was to further elucidate the mechanism of radiation-induced dermal injury and to determine if amifostine (AMF) or deferoxamine (DFO) mitigates type I collagen injury in an irradiated murine model of expander-based breast reconstruction.

Methods

Female Lewis rats (n = 20) were grouped: expander (control), expander-XRT (XRT), expander-XRT-AMF (AMF), and expander-XRT-DFO (DFO). Expanders were surgically placed. All XRT groups received 28 Gy of XRT. The AMF group received AMF 30 minutes before XRT, and the DFO group used a patch for delivery 5 days post-XRT. After a 20-day recovery period, skin was harvested. Atomic force microscopy and Raman spectroscopy were performed to evaluate type I collagen sheet organization and tissue compositional properties, respectively.

Results

Type I collagen fibril disorganization was significantly increased in the XRT group compared with the control (83.8% vs 22.4%; P = 0.001). Collagen/matrix ratios were greatly reduced in the XRT group compared with the control group (0.49 ± 0.09 vs 0.66 ± 0.09; P = 0.017). Prophylactic AMF demonstrated a marked reduction in type I collagen fibril disorganization on atomic force microscopy (15.9% vs 83.8%; P = 0.001). In fact, AMF normalized type I collagen organization in irradiated tissues to the level of the nonirradiated control (P = 0.122). Based on Raman spectroscopy, both AMF and DFO demonstrated significant differential protective effects on expanded-irradiated tissues. Collagen/matrix ratios were significantly preserved in the AMF group compared with the XRT group (0.49 ± 0.09 vs 0.69 ± 0.10; P = 0.010). β-Sheet/α-helix ratios were significantly increased in the DFO group compared with the XRT group (1.76 ± 0.03 vs 1.86 ± 0.06; P = 0.038).

Conclusions

Amifostine resulted in a significant improvement in type I collagen fibril organization and collagen synthesis, whereas DFO mitigated abnormal changes in collagen secondary structure in an irradiated murine model of expander-based breast reconstruction. These therapeutics offer the ability to retain the native microarchitecture of type I collagen after radiation. Amifostine and DFO may offer clinical utility to reduce radiation induced dermal injury, potentially decreasing the high complication rate of expander-based breast reconstruction with adjuvant XRT and improving surgical outcomes.

SUBMITTER: Luby AO 

PROVIDER: S-EPMC7487044 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC11002490 | biostudies-literature
| S-EPMC6310090 | biostudies-literature
| S-EPMC7489665 | biostudies-literature
| S-EPMC5563849 | biostudies-other
| S-EPMC6593424 | biostudies-literature
| S-EPMC9637758 | biostudies-literature
| S-EPMC10730031 | biostudies-literature
| S-EPMC7253267 | biostudies-literature
| S-EPMC6769388 | biostudies-literature