Carbon nanomaterial-derived lung burden analysis using UV-Vis spectrophotometry and proteinase K digestion.
Ontology highlight
ABSTRACT: BACKGROUND:The quantification of nanomaterials accumulated in various organs is crucial in studying their toxicity and toxicokinetics. However, some types of nanomaterials, including carbon nanomaterials (CNMs), are difficult to quantify in a biological matrix. Therefore, developing improved methodologies for quantification of CNMs in vital organs is instrumental in their continued modification and application. RESULTS:In this study, carbon black, nanodiamond, multi-walled carbon nanotube, carbon nanofiber, and graphene nanoplatelet were assembled and used as a panel of CNMs. All CNMs showed significant absorbance at 750?nm, while their bio-components showed minimal absorbance at this wavelength. Quantification of CNMs using their absorbance at 750?nm was shown to have more than 94% accuracy in all of the studied materials. Incubating proteinase K (PK) for 2?days with a mixture of lung tissue homogenates and CNMs showed an average recovery rate over 90%. The utility of this method was confirmed in a murine pharyngeal aspiration model using CNMs at 30??g/mouse. CONCLUSIONS:We developed an improved lung burden assay for CNMs with an accuracy >?94% and a recovery rate >?90% using PK digestion and UV-Vis spectrophotometry. This method can be applied to any nanomaterial with sufficient absorbance in the near-infrared band and can differentiate nanomaterials from elements in the body, as well as the soluble fraction of the nanomaterial. Furthermore, a combination of PK digestion and other instrumental analysis specific to the nanomaterial can be applied to organ burden analysis.
SUBMITTER: Lee DK
PROVIDER: S-EPMC7488454 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA