Unknown

Dataset Information

0

Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration.


ABSTRACT: Purpose:To determine whether caveolin-1 (i) prevents epithelial-mesenchymal transition in the RPE and laser-induced subretinal fibrosis and (ii) promotes or inhibits cellular senescence in the RPE. Methods:We examined laser-induced subretinal fibrosis and RPE cell contraction in wild-type and Caveolin-1 knockout (Cav-1-/-) mice treated with or without cavtratin, a cell-permeable peptide of caveolin-1. The senescence marker p16INK4a was measured in RPE tissues from patients with geographic atrophy and aged mice, laser-induced subretinal fibrosis, and primary human RPE cells. Human RPE was examined by TUNEL staining, reactive oxygen species generation, cell viability, and senescence-associated ?-galactosidase staining. Results:The volume of subretinal fibrosis was significantly smaller in cavtratin-injected eyes from wild-type mice than in control eyes from wild-type, P = 0.0062, and Cav-1-/- mice, P = 0.0095. Cavtratin treatment produced significant improvements in primary RPE cell contraction in wild-type, P = 0.04, and Cav-1-/- mice, P = 0.01. p16INK4a expression in the RPE was higher in patients with than without geographic atrophy. p16INK4a was expressed in 18-month-old but not 2-month-old wild-type mouse eyes. p16INK4a and collagen type I antibodies showed co-localization in subretinal fibrosis. Cavtratin did not affect RPE cell apoptosis or reactive oxygen species generation, but decreased cell viability and increased senescence-associated ?-galactosidase-positive cells. Conclusions:Enhanced expression of caveolin-1 successfully blocked epithelial-mesenchymal transition of RPE and the reduction of subretinal fibrosis in mice. Nevertheless, in exchange for blocking subretinal fibrosis, caveolin-1 promotes RPE cellular senescence and might affect the progression of geographic atrophy in AMD.

SUBMITTER: Shimizu H 

PROVIDER: S-EPMC7490224 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration.

Shimizu Hideyuki H   Yamada Kazuhisa K   Suzumura Ayana A   Kataoka Keiko K   Takayama Kei K   Sugimoto Masataka M   Terasaki Hiroko H   Kaneko Hiroki H  

Investigative ophthalmology & visual science 20200901 11


<h4>Purpose</h4>To determine whether caveolin-1 (i) prevents epithelial-mesenchymal transition in the RPE and laser-induced subretinal fibrosis and (ii) promotes or inhibits cellular senescence in the RPE.<h4>Methods</h4>We examined laser-induced subretinal fibrosis and RPE cell contraction in wild-type and Caveolin-1 knockout (Cav-1-/-) mice treated with or without cavtratin, a cell-permeable peptide of caveolin-1. The senescence marker p16INK4a was measured in RPE tissues from patients with ge  ...[more]

Similar Datasets

| S-EPMC8741927 | biostudies-literature
2024-08-08 | GSE221952 | GEO
| S-EPMC6660032 | biostudies-literature
| S-EPMC8975778 | biostudies-literature
| S-EPMC7690191 | biostudies-literature
| S-EPMC8572511 | biostudies-literature
| S-EPMC10792815 | biostudies-literature
| S-EPMC6605380 | biostudies-literature
| S-EPMC5337135 | biostudies-literature
| S-EPMC7821689 | biostudies-literature