MiR-376c-3p modulates the properties of breast cancer stem cells by targeting RAB2A.
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs/miRs) negatively regulate gene expression and participate in various cellular processes. miRNA dysregulation is associated with cancer progression. The present study aimed to identify the miRNAs that participate in breast cancer tumorigenesis and determine the mechanism that underlies this. miRNA microarray data analysis and validation assays indicated that miR-376c-3p was downregulated in breast tumour tissues and breast cancer stem cells (BCSCs) compared with adjacent non-cancerous tissues and MCF-10A cells, respectively. Ras-related protein Rab-2A (RAB2A) was predicted as a target of miR-376c-3p, which was confirmed by conducting further experiments. miR-376c-3p regulated the BCSC population and the expression of stem cell regulatory genes by targeting RAB2A. By performing mammosphere, Cell Counting Kit-8, colony formation and transwell invasion assays, it was demonstrated that miR-376c-3p also inhibited BCSC self-renewal, proliferation and invasion by regulating RAB2A expression. Using a xenograft mouse model, it was revealed that miR-376c-3p overexpression suppressed breast cancer growth in vivo. In conclusion, the results indicated that miR-376c-3p targeted RAB2A to regulate BCSC fate and properties; therefore, miR-376c-3p may serve as a potential therapeutic target for breast cancer.
SUBMITTER: Zhao F
PROVIDER: S-EPMC7490793 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA