Project description:ObjectiveInvestigate multilevel radiofrequency ablation (RFA) as an alternative therapy for patients with mild-to-moderate obstructive sleep apnea (OSA).Study designProspective, open-label, single-arm, nonrandomized clinical trial.SettingMulticenter academic and private clinics.MethodsPatients with mild-to-moderate OSA (apnea-hypopnea index [AHI] 10-30; body mass index ≤ 32) were treated with 3 sessions of office-based RFA to the soft palate and tongue base. The primary outcome was a change in the AHI and oxygen desaturation index (ODI 4%). Secondary outcomes included subjective sleepiness level; snoring level; and sleep-related quality of life.ResultsFifty-six patients were enrolled, with 43 (77%) completing the study protocol. Following 3 sessions of office-based RFA to the palate and base of the tongue, the mean AHI decreased from 19.7 to 9.9 (p = .001), while the mean ODI (4%) decreased from 12.8 to 8.4 (p = .005). Mean Epworth Sleepiness Scale scores declined from 11.2 (±5.4) to 6.0 (±3.5) (p = .001), while Functional Outcomes of Sleep Questionnaire scores improved from a mean of 14.9 at baseline to 17.4 (p = .001). The mean visual analog scale snoring scale was reduced from 5.3 (±1.4) at baseline to 3.4 (±1.6) at 6 months posttherapy (p = .001).ConclusionOffice-based, multilevel RFA of the soft palate and base of the tongue is a safe and effective treatment option with minimal morbidity for properly selected patients with mild-to-moderate OSA who are intolerant or refuse continuous positive airway pressure therapy.
Project description:Study objectivesMild-to-moderate obstructive sleep apnea (OSA) is highly prevalent in the general population; however, previous studies on its association with incident hypertension are mixed. We examined the association between mild and moderate OSA and incident hypertension in a large random general population sample.MethodsFrom 1741 adults of the Penn State Cohort, 744 adults without hypertension or severe OSA (i.e. apnea/hypopnea index [AHI] ≥ 30 events/hour) were followed-up after 9.2 years. Mild OSA was defined as an AHI of 5 to 14.9 events/hour (n = 71), while moderate OSA as an AHI of 15 to 29.9 events/hour (n = 32). Incident hypertension was defined by a self-report of receiving antihypertensive medication and/or history of a diagnosis since their baseline study.ResultsAfter adjusting for multiple potential confounders, mild-to-moderate OSA was significantly associated with increased risk of incident hypertension (overall hazard ratio [HR] = 2.94, 95% confidence interval (CI) = 1.96-4.41; HR = 3.24, 95% CI = 2.08-5.03 for mild OSA and HR = 2.23, 95% CI = 1.10-4.50 for moderate OSA). Importantly, this association was modified by age (p-interaction < 0.05); while strong in young and middle-aged adults (HR = 3.62, 95% CI = 2.34-5.60), the association was lost in adults older than 60 years (HR = 1.36 95% CI = 0.50-3.72). Furthermore, the association of mild-to-moderate OSA with components of metabolic syndrome was strongest in young and middle-aged adults.ConclusionsMild-to-moderate OSA, even when asymptomatic, is associated with increased risk of incident hypertension, but the strength of association significantly decreases with age. Although older participants with asymptomatic mild-to-moderate OSA are not at significant risk of developing hypertension, early detection and intervention, including improving metabolic indices, is especially warranted in young and middle-aged adults.
Project description:Although corticospinal tract axons cannot regenerate long distances after spinal cord injury, they are able to sprout collateral branches rostral to an injury site that can help form compensatory circuits in cases of incomplete lesions. We show here that inosine enhances the formation of compensatory circuits after a dorsal hemisection of the thoracic spinal cord in mature rats and improves coordinated limb use. Inosine is a naturally occurring metabolite of adenosine that crosses the cell membrane and, in neurons, activates Mst3b, a protein kinase that is part of a signal transduction pathway that regulates axon outgrowth. Compared to saline-treated controls, rats with dorsal hemisections that were treated with inosine showed three times as many synaptic contacts between corticospinal tract collaterals and long propriospinal interneurons that project from the cervical cord to the lumbar level. Inosine-treated rats also showed stronger serotonergic reinnervation of the lumbar cord than saline-treated controls, and performed well above controls in both open-field testing and a horizontal ladder rung-walking test. Inosine was equally effective whether delivered intracranially or intravenously, and has been shown to be safe for other indications in humans. Thus, inosine might be a useful therapeutic for improving outcome after spinal cord injury.
Project description:The number of elderly patients with spinal cord injury without radiographic abnormalities (SCIWORA) has been increasing in recent years and common of most cervical spinal cord injuries. Basic research has shown the effectiveness of early decompression after spinal cord injury on the spinal cord without stenosis; no studies have reported the efficacy of decompression in models with spinal cord compressive lesions. The purpose of this study was to evaluate the effects of decompression surgery after acute spinal cord injury in rats with chronic spinal cord compressive lesions, mimicking SCIWORA. A water-absorbent polymer sheet (Aquaprene DX, Sanyo Chemical Industries) was inserted dorsally into the 4-5th cervical sublaminar space in 8-week-old Sprague Dawley rats to create a rat model with a chronic spinal compressive lesion. At the age of 16 weeks, 30 mildly myelopathic or asymptomatic rats with a Basso, Beattie, and Bresnahan score (BBB score) of 19 or higher were subjected to spinal cord compression injuries. The rats were divided into three groups: an immediate decompression group (decompress immediately after injury), a sub-acute decompression group (decompress 1 week after injury), and a non-decompression group. Behavioral and histological evaluations were performed 4 weeks after the injury. At 20 weeks of age, the BBB score and FLS (Forelimb Locomotor Scale) of both the immediate and the sub-acute decompression groups were significantly higher than those of the non-decompression group. There was no significant difference between the immediate decompression group and the sub-acute decompression group. TUNEL (transferase-mediated dUTP nick end labeling) staining showed significantly fewer positive cells in both decompression groups compared to the non-decompression group. LFB (Luxol fast blue) staining showed significantly more demyelination, and GAP-43 (growth associated protein-43) staining tended to show fewer positive cells in the non-decompression group. Decompression surgery in the acute or sub-acute phase of injury is effective after mild spinal cord injury in rats with chronic compressive lesions. There was no significant difference between the immediate decompression and sub-acute decompression groups.
Project description:Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.
Project description:The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.
Project description:The corticospinal tract is an important target for motor recovery after spinal cord injury (SCI) in animals and humans. Voluntary motor output depends on the efficacy of synapses between corticospinal axons and spinal motoneurons, which can be modulated by the precise timing of neuronal spikes. Using noninvasive techniques, we developed tailored protocols for precise timing of the arrival of descending and peripheral volleys at corticospinal-motoneuronal synapses of an intrinsic finger muscle in humans with chronic incomplete SCI. We found that arrival of presynaptic volleys prior to motoneuron discharge enhanced corticospinal transmission and hand voluntary motor output. The reverse order of volley arrival and sham stimulation did not affect or decreased voluntary motor output and electrophysiological outcomes. These findings are the first demonstration that spike timing-dependent plasticity of residual corticospinal-motoneuronal synapses provides a mechanism to improve motor function after SCI. Modulation of residual corticospinal-motoneuronal synapses may present a novel therapeutic target for enhancing voluntary motor output in motor disorders affecting the corticospinal tract.
Project description:Reduced plasma nitrate (NO(x)) levels and increased urinary norepinephrine (U-NE) levels have been described in severe obstructive sleep apnea (OSA), and are reverted by continuous positive airway pressure (CPAP). The effect of CPAP on these biomarkers in mild-moderate OSA is not well understood. The aim of this study was to compare NO(x) and U-NE levels and blood pressure (BP) between male patients with mild-moderate and severe OSA and determine the impact of 1 month of CPAP therapy on these parameters.We undertook a prospective study of 67 consecutive OSA patients (36 mild-moderate, 31 severe). Measurements of plasma NO(x) at 11 pm, 4 am and 7 am, 24-h U-NE and ambulatory BP were obtained at baseline and after 1 month of CPAP.At baseline, NO(x) levels showed a significant decrease during the night in both groups (p < 0.001). U-NE level and BP were significantly higher in the severe OSA group. After 1 month of CPAP, there was a significant increase in NO(x) levels and a reduction in U-NE level and BP only in patients with severe OSA.One month of CPAP results in significant improvements in NO(x) levels, 24-h U-NE level and BP in patients with severe OSA, but not in patients with mild-moderate OSA.ClinicalTrials.gov: NCT01769807.
Project description:Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.
Project description:It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET) revealed a contribution of the primary motor cortex (M1) to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc), which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury.