Unknown

Dataset Information

0

Efficient sampling and noisy decisions.


ABSTRACT: Human decisions are based on finite information, which makes them inherently imprecise. But what determines the degree of such imprecision? Here, we develop an efficient coding framework for higher-level cognitive processes in which information is represented by a finite number of discrete samples. We characterize the sampling process that maximizes perceptual accuracy or fitness under the often-adopted assumption that full adaptation to an environmental distribution is possible, and show how the optimal process differs when detailed information about the current contextual distribution is costly. We tested this theory on a numerosity discrimination task, and found that humans efficiently adapt to contextual distributions, but in the way predicted by the model in which people must economize on environmental information. Thus, understanding decision behavior requires that we account for biological restrictions on information coding, challenging the often-adopted assumption of precise prior knowledge in higher-level decision systems.

SUBMITTER: Heng JA 

PROVIDER: S-EPMC7492090 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient sampling and noisy decisions.

Heng Joseph A JA   Woodford Michael M   Polania Rafael R  

eLife 20200915


Human decisions are based on finite information, which makes them inherently imprecise. But what determines the degree of such imprecision? Here, we develop an efficient coding framework for higher-level cognitive processes in which information is represented by a finite number of discrete samples. We characterize the sampling process that maximizes perceptual accuracy or fitness under the often-adopted assumption that full adaptation to an environmental distribution is possible, and show how th  ...[more]

Similar Datasets

| S-EPMC9758588 | biostudies-literature
| S-EPMC7355286 | biostudies-literature
| S-EPMC9832482 | biostudies-literature
| S-EPMC1356668 | biostudies-literature
| S-EPMC3304019 | biostudies-literature
| S-EPMC9617456 | biostudies-literature
| S-EPMC7799181 | biostudies-literature
| S-EPMC5542693 | biostudies-literature
| S-EPMC5413896 | biostudies-literature
| S-EPMC7178416 | biostudies-literature