Sensitization of drug resistant sarcoma tumors by membrane modulation via short chain sphingolipid-containing nanoparticles.
Ontology highlight
ABSTRACT: Nanoparticles such as liposomes are able to overcome cancer treatment challenges such as multidrug resistance by increasing the bioavailability of the encapsulated drug, bypassing drug pumps or through targeting resistant cells. Here, we merge enhanced drug delivery by nanotechnology with tumor cell membrane modulation combined in a single formulation. This is achieved through the incorporation of Short chain sphingolipids (SCSs) in the liposomal composition, which permeabilizes cell membranes to amphiphilic drugs such as Doxorubicin (Dxr). To study the mechanism and capability of SCS-containing nanodevices to overcome Dxr resistance, a sensitive uterine sarcoma cell line, MES-SA, and a resistant derived cell line, MES-SA/MX2, were used. The mechanism of resistance was explored by lipidomics and flow cytometry, revealing significant differences in lipid composition and in P glycoprotein (Pgp) expression. In vitro assays show that SCS liposomes were able to reverse cell resistance, and importantly, display a higher net effect on resistant than sensitive cells. SCS lipids modulated the cell membrane of MES-SA/MX2 drug resistant cells, while Pgp expression was not affected. Furthermore, SCS-modified liposomes were evaluated in a sarcoma xenograft model on drug accumulation, pharmacokinetics and efficacy. SCS liposomes improved Dxr levels in tumor nuclei of MES-SA/MX2 tumor cells, which was accompanied by a delay in tumor growth of the resistant model. Here we show that Dxr accumulation in tumor cells by SCS-modified liposomes was especially improved in Dxr resistant cells, rendering Dxr as effective as in sensitive cells. Moreover, this phenomenon translated to improved efficacy when Dxr liposomes where modified with SCSs in the drug resistant tumor model, while no benefit was seen in the sensitive tumors.
SUBMITTER: Zalba S
PROVIDER: S-EPMC7497538 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA