Unknown

Dataset Information

0

The triterpenoid sapogenin (2?-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling.


ABSTRACT: Gypenosides, extracts of Gynostemma yixingense, have been traditionally prescribed to improve metabolic syndrome in Asian folk and local traditional medicine hospitals. However, the mechanism of its action remains unclarified. In this work, our results indicated that chronic administration of 2?-OH-protopanoxadiol (GP2), a metabolite of gypenosides in vivo, protected mice from high-fat diet-induced obesity and improved glucose tolerance by improving intestinal L-cell function. Mechanistically, GP2 treatment inhibited the enzymatic activity of bile salt hydrolase and modulated the proportions of the gut microbiota, which led to an increase in the accumulation of tauro-?-muricholic acid (T?MCA) in the intestine. T?MCA induced GLP-1 production and secretion by reducing the transcriptional activity of nuclear receptor farnesoid X receptor (FXR). Transplantation of GP2-remodelled fecal microbiota into antibiotic-treated mice also increased the intestinal T?MCA content and improved intestinal L-cell function. These findings demonstrate that GP2 ameliorates metabolic syndrome at least partly through the intestinal FXR/GLP-1 axis via gut microbiota remodelling and also suggest that GP2 may serve as a promising oral therapeutic agent for metabolic syndrome.

SUBMITTER: Xie Z 

PROVIDER: S-EPMC7499306 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The triterpenoid sapogenin (2α-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling.

Xie Zhifu Z   Jiang Haowen H   Liu Wei W   Zhang Xinwen X   Chen Dakai D   Sun Shuimei S   Zhou Chendong C   Liu Jia J   Bao Sheng S   Wang Xiachang X   Zhang Yinan Y   Li Jia J   Hu Lihong L   Li Jingya J  

Cell death & disease 20200917 9


Gypenosides, extracts of Gynostemma yixingense, have been traditionally prescribed to improve metabolic syndrome in Asian folk and local traditional medicine hospitals. However, the mechanism of its action remains unclarified. In this work, our results indicated that chronic administration of 2α-OH-protopanoxadiol (GP2), a metabolite of gypenosides in vivo, protected mice from high-fat diet-induced obesity and improved glucose tolerance by improving intestinal L-cell function. Mechanistically, G  ...[more]

Similar Datasets

| S-EPMC9870091 | biostudies-literature
| S-EPMC6307944 | biostudies-literature
| S-EPMC7753965 | biostudies-literature
| S-EPMC4164778 | biostudies-literature
2018-12-12 | E-MTAB-7329 | biostudies-arrayexpress
| S-EPMC8516775 | biostudies-literature
| S-EPMC6701863 | biostudies-literature
| S-EPMC9907109 | biostudies-literature
| S-EPMC10675972 | biostudies-literature
| S-EPMC7581713 | biostudies-literature